Previous |  Up |  Next

Article

Title: A $\sigma$-porous set need not be $\sigma$-bilaterally porous (English)
Author: Nájares, J.
Author: Zajíček, L.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 35
Issue: 4
Year: 1994
Pages: 697-703
.
Category: math
.
Summary: A closed subset of the real line which is right porous but is not $\sigma$-left-porous is constructed. (English)
Keyword: sigma-porous
Keyword: sigma-bilaterally-porous
Keyword: right porous
MSC: 26A03
MSC: 26A21
MSC: 26A99
MSC: 28A05
MSC: 28A55
MSC: 54H05
idZBL: Zbl 0822.26001
idMR: MR1321240
.
Date available: 2009-01-08T18:14:29Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118711
.
Reference: [F] Foran J.: Continuous functions need not have $ \sigma $-porous graphs.Real Anal. Exchange 11 (1985-86), 194-203. Zbl 0607.26005, MR 0828490
Reference: [Za 1] Zajíček L.: On $ \sigma $-porous sets and Borel sets.Topology Appl. 33 (1989), 99-103. MR 1020986
Reference: [Za 2] Zajíček L.: Sets of $ \sigma $-porosity and sets of $ \sigma $-porosity $(q)$.Časopis Pěst. Mat. 101 (1976), 350-359. Zbl 0341.30026, MR 0457731
Reference: [Za 3] Zajíček L.: Porosity and $ \sigma $-porosity.Real Anal. Exchange 13 (1987-88), 314-350. MR 0943561
Reference: [E-H-S] Evans M.J., Humke P.D., Saxe K.: A symmetric porosity conjecture of L. Zajíček.Real Anal. Exchange 17 (1991-92), 258-271. MR 1147367
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_35-1994-4_11.pdf 189.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo