Previous |  Up |  Next


Title: On a method for a-posteriori error estimation of approximate solutions to parabolic problems (English)
Author: Weisz, J.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 35
Issue: 4
Year: 1994
Pages: 735-740
Category: math
Summary: The aim of the paper is to derive a method for the construction of a-posteriori error estimate to approximate solutions to parabolic initial-boundary value problems. The computation of the suggested error bound requires only the computation of a finite number of systems or linear algebraic equations. These systems can be solved parallelly. It is proved that the suggested a-posteriori error estimate tends to zero if the approximation tends to the true solution. (English)
Keyword: parabolic problem
Keyword: a-posteriori error estimate
MSC: 35K15
MSC: 65M15
MSC: 65M20
idZBL: Zbl 0822.65067
idMR: MR1321243
Date available: 2009-01-08T18:14:46Z
Last updated: 2012-04-30
Stable URL:
Reference: [1] Eriksson K., Johnson C.: Adaptive finite element methods for parabolic problems I: A linear model problem.SIAM J. Numer. Anal. 28 (1991), 43-77. Zbl 0732.65093, MR 1083324
Reference: [2] Gajewski H., Gröger K.: Konjugierte Probleme und a-posteriori Fehlerabschätzungen,.Math. Nachrichten 73 (1976), 315-333. MR 0435959
Reference: [3] Gajewski H., Gröger K., Zacharias K.: Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen.Akademie -Verlag Berlin, 1974 (Russian Mir Moskva 1978). MR 0636412
Reference: [4] Weisz J.: A posteriori error estimate of approximate solutions to a mildly nonlinear elliptic boundary value problem.Commentationes Math. Univ. Carolinae 31 (1990), 315-322. Zbl 0709.65074, MR 1077902


Files Size Format View
CommentatMathUnivCarolRetro_35-1994-4_14.pdf 183.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo