Previous |  Up |  Next

Article

Title: Lacunary strong convergence with respect to a sequence of modulus functions (English)
Author: Pehlivan, Serpil
Author: Fisher, Brian
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 36
Issue: 1
Year: 1995
Pages: 69-76
.
Category: math
.
Summary: The definition of lacunary strong convergence is extended to a definition of lacunary strong convergence with respect to a sequence of modulus functions in a Banach space. We study some connections between lacunary statistical convergence and lacunary strong convergence with respect to a sequence of modulus functions in a Banach space. (English)
Keyword: lacunary sequence
Keyword: modulus function
Keyword: statistical convergence
Keyword: Banach space
MSC: 40A05
MSC: 40F05
MSC: 40G99
MSC: 40J05
MSC: 46A45
idZBL: Zbl 0821.40001
idMR: MR1334415
.
Date available: 2009-01-08T18:16:05Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118733
.
Reference: [1] Connor J.S.: The statistical and strong $p$-Cesàro convergence of sequences.Analysis 8 (1988), 47-63. Zbl 0653.40001, MR 0954458
Reference: [2] Connor J.S.: On strong matrix summability with respect to a modulus and statistical convergence.Canad. Math. Bull. 32 (1989), 194-198. Zbl 0693.40007, MR 1006746
Reference: [3] Fast H.: Sur la convergence statistique.Colloq. Math. 2 (1951), 241-244. Zbl 0044.33605, MR 0048548
Reference: [4] Freedman A.R., Sember J.J., Raphael M.: Some Cesàro-type summability spaces.Proc. London Math. Soc. 37 (3) (1978), 508-520. Zbl 0424.40008, MR 0512023
Reference: [5] Freedman A.R.. Sember J.J.: Densities and summability.Pacific J. Math. 95 (2) (1981), 293-305. MR 0632187
Reference: [6] Fridy J.A., Orhan C.: Lacunary statistical summability.J. Math. Anal. Appl. 173 (1993), 497-504. Zbl 0786.40004, MR 1209334
Reference: [7] Fridy J.A., Orhan C.: Lacunary statistical convergence.Pacific J. Math. 160 (1993), 45-51. Zbl 0794.60012, MR 1227502
Reference: [8] Kolk E.: The statistical convergence in Banach spaces.Acta Comm. Univ. Tartuensis 928 (1991), 41-52. MR 1150232
Reference: [9] Lorentz G.G.: A contribution to the theory of divergent sequences.Acta Math. 80 (1948), 167-190. Zbl 0031.29501, MR 0027868
Reference: [10] Maddox I.J.: A new type of convergence.Math. Proc. Camb. Philos. Soc. 83 (1978), 61-64. Zbl 0392.40001, MR 0493034
Reference: [11] Maddox I.J.: Sequence spaces defined by a modulus.Math. Proc. Camb. Philos. Soc. 100 (1986), 161-166. Zbl 0631.46010, MR 0838663
Reference: [12] Maddox I.J.: Inclusion between $FK$ spaces and Kuttner's theorem.Math. Proc. Camb. Philos. Soc. 101 (1987), 523-527. MR 0878899
Reference: [13] Nakano H.: Concave modulars.J. Math. Soc. Japan 5 (1953), 29-49. Zbl 0050.33402, MR 0058882
Reference: [14] Niven I., Zuckerman H.S.: An introduction to the theorem of numbers.4th ed., Wiley, New York, 1980. MR 0572268
Reference: [15] Pehlivan S.: Sequence space defined by a modulus function.Erc. Univ. J. Sci. 5 (1989), 875-880.
Reference: [16] Pehlivan S., Fisher B.: Some sequence spaces defined by a modulus function.Math. Slovaca 44 (1994), to appear. MR 1361822
Reference: [17] Šalát T.: On statistically convergent sequences of real numbers.Math. Slovaca 30 (2) (1980), 139-150. MR 0587239
Reference: [18] Schoenberg I.J.: The integrability of certain functions and related summability methods.Amer. Math. Monthly 66 (5) (1959), 361-375. Zbl 0089.04002, MR 0104946
Reference: [19] Ruckle W.H.: $FK$ spaces in which the sequence of coordinate vectors is bounded.Can. J. Math. 25 (1973), 973-978. Zbl 0267.46008, MR 0338731
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_36-1995-1_10.pdf 200.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo