Previous |  Up |  Next

Article

Title: Universal minimal dynamical system for reals (English)
Author: Turek, Sławomir
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 36
Issue: 2
Year: 1995
Pages: 371-375
.
Category: math
.
Summary: Our aim is to give a description of $S(\Bbb R)$ and $M(\Bbb R)$, the phase space of universal ambit and the phase space of universal minimal dynamical system for the group of real numbers with the usual topology. (English)
Keyword: ambit
Keyword: Samuel compactification
Keyword: minimal dynamical system
MSC: 54H20
idZBL: Zbl 0892.54024
idMR: MR1357536
.
Date available: 2009-01-08T18:18:29Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118763
.
Reference: [1] Arkhangel'skii A.V., Ponomarev V.I.: Osnovy obshcheĭ topologii v zadachakh i uprazhneniyakh.Nauka, Moskva, 1974. MR 0445439
Reference: [2] Balcar B., Błaszczyk A.: On minimal dynamical systems on Boolean algebras.Comment. Math. Univ. Carolinae 31 (1990), 7-11. MR 1056164
Reference: [3] Brook R.: A construction of the greatest ambit.Math. Systems Theory 4 (1970), 243-248. MR 0267038
Reference: [4] Engelking R.: General Topology.PWN, Warszawa, 1977. Zbl 0684.54001, MR 0500780
Reference: [5] Gutek A.: A Generalization of Solenoids.Colloquia Math. Soc. J. Bolyai 23 (Proceedings of Colloquium on Topology, Budapest 1978), Amsterdam 1980, 547-554. Zbl 0449.54035, MR 0588803
Reference: [6] de Vries J.: Elements of Topological Dynamics.Kluwer Academic Publishers, DordrechtBoston-London, 1993. Zbl 0783.54035, MR 1249063
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_36-1995-2_15.pdf 188.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo