Previous |  Up |  Next

Article

Title: On the existence of 2-fields in 8-dimensional vector bundles over 8-complexes (English)
Author: Čadek, Martin
Author: Vanžura, Jiří
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 36
Issue: 2
Year: 1995
Pages: 377-394
.
Category: math
.
Summary: Necessary and sufficient conditions for the existence of two linearly independent sections in an 8-dimensional spin vector bundle over a CW-complex of the same dimension are given in terms of characteristic classes and a certain secondary cohomology operation. In some cases this operation is computed. (English)
Keyword: span of the vector bundle
Keyword: classifying spaces for spinor groups
Keyword: characteristic classes
Keyword: Postnikov tower
Keyword: secondary cohomology operation
MSC: 55R25
MSC: 57R22
MSC: 57R25
idZBL: Zbl 0921.57016
idMR: MR1357537
.
Date available: 2009-01-08T18:18:40Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118764
.
Reference: [AD] Atiyah M., Dupont J.: Vector fields with finite singularities.Acta Math. (1972), 128 1-40. Zbl 0233.57010, MR 0451256
Reference: [B] Borel A.: Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts.Ann. Math. (1953), 57 115-207. Zbl 0052.40001, MR 0051508
Reference: [F] Frank D.: On the index of a tangent $2$-field.Topology (1972), 11 245-252. Zbl 0252.57006, MR 0298689
Reference: [H] Hirzebruch F.: Neue topologische Methoden in der algebraischen Geometrie.Ergebnisse der Mathematik und ihrer Grenzgebiete, Heft 9, Berlin (1959).
Reference: [K] Kono A.: On the integral cohomology of $BSpin(n)$.J. Math. Kyoto Univ. (1986), 26:3 333-337. Zbl 0617.55007, MR 0857221
Reference: [Ma] Massey W.S.: On the Stiefel-Whitney classes of a manifold II.Proc. Amer. Math. Soc. (1962), 13 938-942. Zbl 0109.15902, MR 0142129
Reference: [M] Milnor J.: Some consequences of a theorem of Bott.Ann. of Math. (1958), 68 444-449. Zbl 0085.17301, MR 0102805
Reference: [MT] Mosher R.E., Tangora M.C.: Cohomology operations and applications in homotopy theory.Harper & Row, Publishers New York, Evanston and London (1968). Zbl 0153.53302, MR 0226634
Reference: [Ng] Tze-Beng Ng: On the geometric dimension of the vector bundles, span of a manifold and immersions of manifolds in manifolds.Exposition. Math. (1990), 8 193-226. MR 1062767
Reference: [P] Paechter G.: The groups $\pi_r(V_{n,m})$: I.Quart. J. Math., Oxford Ser. (2) (1956), 7 243-268. MR 0131878
Reference: [Q] Quillen D.: The mod $2$ cohomology rings of extra-special $2$-groups and the spinor groups.Math. Ann. (1971), 194 197-212. Zbl 0225.55015, MR 0290401
Reference: [T1] Thomas E.: The index of a tangent $2$-field.Comment. Math. Helvet. (1967), 42 86-110. Zbl 0153.53504, MR 0215317
Reference: [T2] Thomas E.: Complex structures on real vector bundles.Am. J. Math. (1966), 89 887-908. MR 0220310
Reference: [T3] Thomas E.: On the cohomology of the real Grassmann complexes.Trans. Amer. Math. Soc. (1960), 96 67-89. Zbl 0098.36301, MR 0121800
Reference: [T4] Thomas E.: On the cohomology groups of the classifying space for the stable spinor group.Bol. Soc. Math. Mex. (1962), 57-69. Zbl 0124.16401, MR 0153027
Reference: [T5] Thomas E.: Postnikov invariants and higher order cohomology operation.Ann. of Math. (1967), 85 184-217. MR 0210135
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_36-1995-2_16.pdf 269.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo