Previous |  Up |  Next

Article

Title: Eigenvalues of the $p$-Laplacian in ${\boldkey R}^N$ with indefinite weight (English)
Author: Huang, Yin Xi
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 36
Issue: 3
Year: 1995
Pages: 519-527
.
Category: math
.
Summary: We consider the nonlinear eigenvalue problem $$ -\operatorname{div}(|{\nabla} u|^{p-2}{\nabla} u)=\lambda g(x)|u|^{p-2}u $$ in $\boldkey R^N$ with $p>1$. A condition on indefinite weight function $g$ is given so that the problem has a sequence of eigenvalues tending to infinity with decaying eigenfunctions in ${W^{1, p}(\boldkey R^N)}$. A nonexistence result is also given for the case $p\geq N$. (English)
Keyword: eigenvalue
Keyword: the $p$-Laplacian
Keyword: indefinite weight
Keyword: $\boldkey R^N$
MSC: 35J65
MSC: 35J70
MSC: 35P30
MSC: 58E05
idZBL: Zbl 0839.35097
idMR: MR1364493
.
Date available: 2009-01-08T18:19:52Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118781
.
Reference: [A] Anane A.: Simplicité et isolation de la première valeur propre du $p$-laplacien avec poids.C.R. Acad. Sci. Paris 305 I (1987), 725-728. Zbl 0633.35061, MR 0920052
Reference: [AA] Azorezo J.P.G., Alonso I.P.: Existence and uniqueness for the $p$-Laplacian: nonlinear eigenvalues.Comm. PDE 12 (1987), 1389-1430. MR 0912211
Reference: [BK] Brezis H., Kato T.: Remarks on the Schrödinger operator with singular complex potentials.J. Math. Pures Appl. 58 (1979), 137-151. Zbl 0408.35025, MR 0539217
Reference: [BCF] Brown K.J., Cosner C., Fleckinger J.: Principal eigenvalues for problems with indefinite weight functions on $\pmb R^N$.Proc. Amer. Math. Soc. 109 (1990), 147-156. MR 1007489
Reference: [BLT] Brown K.J., Lin S.S., Tertikas A.: Existence and nonexistence of steady-state solutions for a selection-migration model in population genetics.J. Math. Biol. 27 (1989), 91-104. Zbl 0714.92011, MR 0984228
Reference: [GT] Gilbarg D., Trudinger N.S.: Elliptic Partial Differential Equations of Second Order.2nd edition, Springer-Verlag, N.Y., 1983. Zbl 1042.35002, MR 0737190
Reference: [H] Huang Y.X.: On eigenvalue problems of the $p$-Laplacian with Neumann boundary conditions.Proc. Amer. Math. Soc. 109 (1990), 177-184. Zbl 0715.35061, MR 1010800
Reference: [HM] Huang Y.X., Metzen G.: The existence of solutions to a class of semilinear differential equations.Diff. Int. Equa., to appear. Zbl 0818.34013, MR 1296134
Reference: [L] Lewis J.: Smoothness of certain degenerate elliptic equations.Proc. Amer. Math. Soc. 80 (1980), 259-265. Zbl 0455.35064, MR 0577755
Reference: [LY] Li Gongbao, Yan Shusen: Eigenvalue problems for quasilinear elliptic equations in $\pmb R^N$.Comm. PDE 14 (1989), 1291-1314. MR 1017074
Reference: [Ln] Lindqvist P.: On the equation ${div} (|\nabla u|^{p-2}\nabla u)+\lambda|u|^{p-2}|u=0$.Proc. Amer. Math. Soc. 109 (1990), 157-164. Zbl 0714.35029, MR 1007505
Reference: [OT] Otani M., Teshima T.: On the first eigenvalue of some quasilinear elliptic equations.Proc. Japan Acad. Ser. A 64 (1988), 8-10. Zbl 0662.35080, MR 0953752
Reference: [S] Serrin J.: Local behavior of solutions of quasilinear equations.Acta Math. 111 (1964), 247-302. MR 0170096
Reference: [St] Struwe M.: Variational Methods.Springer-Verlag, Berlin, 1990. MR 1078018
Reference: [Sz] Szulkin A.: Ljusternik-Schnirelmann theory on $C^1$-manifolds.Ann. Inst. Henri Poincaré, Anal. Nonl. 5 (1988), 119-139. MR 0954468
Reference: [T] Tolksdorf P.: On the Dirichlet problem for quasilinear equations in domains with conical boundary points.Comm. PDE 8 (1983), 773-817. Zbl 0515.35024, MR 0700735
Reference: [TR] Trudinger N.: On Harnack type inequalities and their application to quasilinear elliptic equations.Comm. Pure Appl. Math. 20 (1967), 721-747. Zbl 0153.42703, MR 0226198
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_36-1995-3_14.pdf 219.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo