Full entry |
PDF
(0.2 MB)
Feedback

chain recurrent set; attractor; decomposition

References:

[1] Anosov D.V.: **Geodesic Flows on Closed Riemannian Manifolds of Negative Curvature**. Proceedings of the Steklov Institute of Mathematics, Vol. 90, American Mathematical Society, Providence, R.I., 1969. MR 0242194 | Zbl 0135.40402

[2] Block L., Franke J.E.: **The chain recurrent set, attractors, and explosions**. Ergodic Theory and Dynamical Systems 5 (1985), 321-327. MR 0805832 | Zbl 0572.54037

[3] Bowen R.: **Equilibrium States and the Ergodic Theory of Axiom A Diffeomorphisms**. Lecture Notes in Mathematics, Vol. 470, Springer Verlag, New York, 1975. MR 0442989

[4] Bowen R.: **On Axiom A Diffeomorphisms**. CBMS Regional Conference Series in Mathematics, Vol. 35, American Mathematical Society, Providence, R.I., 1978. MR 0482842 | Zbl 0383.58010

[5] Conley C.: **The Gradient Structure of a Flow, I**. IBM RC 3932, #17806, 1972; reprinted in Ergodic Theory and Dynamical Systems 8* (1988), 11-26. MR 0967626 | Zbl 0687.58033

[6] Conley C.: **Isolated Invariant Sets and the Morse Index**. CBMS Regional Conference Series in Mathematics, Vol. 38, American Mathematical Society, Providence, R.I., 1978. MR 0511133 | Zbl 0397.34056

[7] Easton R.: **Isolating blocks and epsilon chains for maps**. Physica D 39 (1989), 95-110. MR 1021184 | Zbl 0696.58042

[8] Franks J.: **Book review**. Ergodic Theory and Dynamical Systems 7 (1987), 313-315. MR 0967632

[9] Franks J.: **A Variation on the Poincaré-Birkhoff Theorem**. in: Hamiltonian Dynamical Systems, K.R. Meyer and D.G. Saari, eds., American Mathematical Society, Providence, R.I., 1988, pp. 111-117. MR 0986260 | Zbl 0679.58026

[10] Hurley M.: **Chain recurrence and attraction in non-compact spaces**. Ergodic Theory and Dynamical Systems 11 (1991), 709-729. MR 1145617 | Zbl 0785.58033

[11] McGehee R.P.: **Some Metric Properties of Attractors with Applications to Computer Simulations of Dynamical Systems**. preprint, 1988.

[12] Milnor J.: **On the concept of attractor**. Communications in Mathematical Physics 99 (1985), 177-195. MR 0790735 | Zbl 0602.58030

[13] Norton D.E.: **Coarse-Grain Dynamics and the Conley Decomposition Theorem**. submitted, 1994.

[14] Norton D.E.: **The Conley Decomposition Theorem for Maps: A Metric Approach**. submitted, 1994. MR 1366526 | Zbl 0856.58028

[15] Norton D.E.: **A Metric Approach to the Conley Decomposition Theorem**. Thesis, University of Minnesota, 1989.

[16] Ruelle D.: **Small random perturbations of dynamical systems and the definition of attractors**. Communications in Mathematical Physics 82 (1981), 137-151. MR 0638517 | Zbl 0482.58017