Previous |  Up |  Next

Article

Title: Constructions of smooth and analytic cocycles over irrational circle rotations (English)
Author: Volný, Dalibor
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 36
Issue: 4
Year: 1995
Pages: 745-764
.
Category: math
.
Summary: We define a class of step cocycles (which are coboundaries) for irrational rotations of the unit circle and give conditions for their approximation by smooth and real analytic coboundaries. The transfer functions of the approximating (smooth and real analytic) coboundaries are close (in the supremum norm) to the transfer functions of the original ones. This result makes it possible to construct smooth and real analytic cocycles which are ergodic, ergodic and squashable (see [Aaronson, Lemańczyk, Volný]), of type $III_0$, or which are coboundaries with nonintegrable transfer functions. The cocycles are constructed as sums of coboundaries. (English)
Keyword: smooth cocycle
Keyword: real analytic cocycle
Keyword: transfer function
Keyword: type $III_0$
Keyword: ergodic and squashable
Keyword: distributions of a cocycle
MSC: 11K50
MSC: 28D05
MSC: 60F05
idZBL: Zbl 0866.28014
idMR: MR1378696
.
Date available: 2009-01-08T18:21:28Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118802
.
Reference: [1] Aaronson J., Lemańczyk M., Volný D.: Salad of cocycles.preprint.
Reference: [2] Baggett L.W., Medina H.A., Merrill K.D.: On functions that are trivial cocycles for a set of irrationals, II.to appear. Zbl 0876.28024, MR 1285971
Reference: [3] Baggett L.W., Merrill K.D.: Smooth cocycles for an irrational rotation.Israel J. Math. 79 (1992), 281-288. Zbl 0769.28013, MR 1248918
Reference: [4] Billingsley P.: Convergence of Probability Measures.Wiley New York (1968). Zbl 0172.21201, MR 0233396
Reference: [5] Hamachi T.: Type $III_0$ cocycles with unbounded gaps.Commentationes Math. Univ. Carolinae 36.4 (1995), 713-720. MR 1378692
Reference: [6] Herman M.R.: Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations.IHES Publications Math. 49 (1979), 5-234. Zbl 0448.58019, MR 0538680
Reference: [7] Katok: Constructions in Ergodic Theory.manuscript. Zbl 1130.37304
Reference: [8] Khinchine: Continued Fractions.P. Noordhoff, Ltd. Groningen (1963). MR 0161834
Reference: [9] Kuipers L., Niederreiter H.: Uniform Distribution of Sequences.Wiley New York (1974). Zbl 0281.10001, MR 0419394
Reference: [10] Kwiatkowski J., Lemańczyk M., Rudolph D.: On weak isomorphism of measure preserving diffeomorphisms.Israel J. Math. 80 (1992), 33-64. MR 1248926
Reference: [11] Kwiatkowski J., Lemańczyk M., Rudolph D.: A class of cocycles having an analytic modification.Israel J. Math. 87 (1994), 337-360. MR 1286834
Reference: [12] Lemańczyk M.: Analytic nonregular cocycles over irrational rotations.Commentationes Math. Univ. Carolinae 36.4 (1995), 727-735. MR 1378694
Reference: [13] Lemańczyk M.: Personal communication..
Reference: [14] Liardet P., Volný D.: Sums of continuous and differentiable functions in dynamical systems.preprint. MR 1459847
Reference: [15] Parry W., Tuncel S.: Classification Problems in Ergodic Theory.London Math. Society Lecture Notes 67, Cambridge University Press Cambridge (1982). Zbl 0487.28014, MR 0666871
Reference: [16] Schmidt K.: Cocycles of Ergodic Transformation Groups.Macmillan Lectures in Math. vol. 1, Macmillan Company of India (1977). MR 0578731
Reference: [17] Stewart M.: Irregularities of uniform distribution.Acta Math. Acad. Sci. Hungar. 37 (1981), 185-221. Zbl 0475.10040, MR 0616890
Reference: [18] Volný D.: On limit theorems and category for dynamical systems.Yokohama Math. J. 38 (1990), 29-35. MR 1093661
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_36-1995-4_13.pdf 280.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo