Previous |  Up |  Next

Article

Title: Hausdorff topology and uniform convergence topology in spaces of continuous functions (English)
Author: Artico, Umberto
Author: Marconi, Giuliano
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 36
Issue: 4
Year: 1995
Pages: 765-773
.
Category: math
.
Summary: The local coincidence of the Hausdorff topology and the uniform convergence topology on the hyperspace consisting of closed graphs of multivalued (or continuous) functions is related to the existence of continuous functions which fail to be uniformly continuous. The problem of the local coincidence of these topologies on ${}C(X,Y)$ is investigated for some classes of spaces: topological groups, zero-dimensional spaces, metric manifolds. (English)
Keyword: hyperspace
Keyword: Hausdorff metric and uniformity
Keyword: metric manifold
MSC: 54A20
MSC: 54B20
MSC: 54C35
MSC: 54E15
idZBL: Zbl 0853.54016
idMR: MR1378697
.
Date available: 2009-01-08T18:21:32Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118803
.
Reference: [1] Beer G.: Metric spaces on which continuous functions are uniformly continuous and Hausdorff distance.Proc. Amer. Math. Soc. 95 (1985), 653-658. Zbl 0594.54007, MR 0810180
Reference: [2] Deimling K.: Nonlinear Functional Analysis.Springer-Verlag Berlin (1985). Zbl 0559.47040, MR 0787404
Reference: [3] Guillemin V., Pollack A.: Differential Topology.Prentice-Hall Inc. Englewood Cliffs NJ (1974). Zbl 0361.57001, MR 0348781
Reference: [4] Isbell J.R.: Uniform Spaces.Mathematical Surveys nr 12 AMS Providence, Rhode Island (1964). Zbl 0124.15601, MR 0170323
Reference: [5] Naimpally S.: Graph topology for function spaces.Trans. Amer. Math. Soc. 123 (1966), 267-272. Zbl 0151.29703, MR 0192466
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_36-1995-4_14.pdf 219.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo