Title:
|
Pointwise estimates of nonnegative subsolutions of quasilinear elliptic equations at irregular boundary points (English) |
Author:
|
Malý, Jan |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
37 |
Issue:
|
1 |
Year:
|
1996 |
Pages:
|
23-42 |
. |
Category:
|
math |
. |
Summary:
|
Let $u$ be a weak solution of a quasilinear elliptic equation of the growth $p$ with a measure right hand term $\mu$. We estimate $u(z)$ at an interior point $z$ of the domain $\Omega$, or an irregular boundary point $z\in \partial\Omega$, in terms of a norm of $u$, a nonlinear potential of $\mu$ and the Wiener integral of $\bold R^n\setminus \Omega$. This quantifies the result on necessity of the Wiener criterion. (English) |
Keyword:
|
elliptic equations |
Keyword:
|
Wiener criterion |
Keyword:
|
nonlinear potentials |
Keyword:
|
measure data |
MSC:
|
35B45 |
MSC:
|
35D05 |
MSC:
|
35J65 |
MSC:
|
35J67 |
MSC:
|
35J70 |
MSC:
|
35R05 |
idZBL:
|
Zbl 0851.35047 |
idMR:
|
MR1396160 |
. |
Date available:
|
2009-01-08T18:22:05Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/118812 |
. |
Reference:
|
[1] Adams D.R.: $L^p$ potential theory techniques and nonlinear PDE.In: Potential Theory (Ed. M. Kishi) Walter de Gruyter & Co Berlin (1992), 1-15. Zbl 0760.22013, MR 1167217 |
Reference:
|
[2] Adams D.R., Hedberg L.I.: Function Spaces and Potential Theory.Springer Verlag Berlin (1995). Zbl 0834.46021, MR 1411441 |
Reference:
|
[3] Adams D.R., Meyers N.G.: Thinness and Wiener criteria for non-linear potentials.Indiana Univ. Math. J. 22 (1972), 169-197. Zbl 0244.31012, MR 0316724 |
Reference:
|
[4] Brelot M.: On Topologies and Boundaries in Potential Theory.Lecture Notes in Math. 175, Springer ({1971}). Zbl 0222.31014, MR 0281940 |
Reference:
|
[5] Federer H., Ziemer W.P.: The Lebesgue set of a function whose partial derivatives are $p$-th power summable.Indiana Univ. Math. J. 22 (1972), 139-158. MR 0435361 |
Reference:
|
[6] Frehse J.: Capacity methods in the theory of partial differential equations.Jahresber. Deutsch. Math. Verein. 84 (1982), 1-44. Zbl 0486.35002, MR 0644068 |
Reference:
|
[7] Fuglede B.: The quasi topology associated with a countably subadditive set function.Ann. Inst. Fourier Grenoble 21.1 (1971), 123-169. Zbl 0197.19401, MR 0283158 |
Reference:
|
[8] Gariepy R., Ziemer W.P.: A regularity condition at the boundary for solutions of quasilinear elliptic equations.Arch. Rat. Mech. Anal. 67 (1977), 25-39. Zbl 0389.35023, MR 0492836 |
Reference:
|
[9] Hedberg L.I.: Nonlinear potentials and approximation in the mean by analytic functions.Math. Z. 129 (1972), 299-319. MR 0328088 |
Reference:
|
[10] Hedberg L.I., Wolff Th.H.: Thin sets in nonlinear potential theory.Ann. Inst. Fourier 33.4 (1983), 161-187. Zbl 0508.31008, MR 0727526 |
Reference:
|
[11] Heinonen J., Kilpeläinen T.: On the Wiener criterion and quasilinear obstacle problems.Trans. Amer. Math. Soc. 310 (1988), 239-255. MR 0965751 |
Reference:
|
[12] Heinonen J., Kilpeläinen T., Martio O.: Fine topology and quasilinear elliptic equations.Ann. Inst. Fourier 39.2 (1989), 293-318. MR 1017281 |
Reference:
|
[13] Heinonen J., Kilpeläinen T., Martio O.: Nonlinear Potential Theory of Degenerate Elliptic Equations.Oxford University Press, Oxford (1993). MR 1207810 |
Reference:
|
[14] Kilpeläinen T., Malý J.: Degenerate elliptic equations with measure data and nonlinear potentials.Ann. Scuola Norm. Sup. Pisa. Cl. Science, Ser. IV 19 (1992), 591-613. MR 1205885 |
Reference:
|
[15] Kilpeläinen T., Malý J.: Supersolutions to degenerate elliptic equations on quasi open sets.Comm. Partial Differential Equations 17 (1992), 371-405. MR 1163430 |
Reference:
|
[16] Kilpeläinen T., Malý J.: The Wiener test and potential estimates for quasilinear elliptic equations.Acta Math. 172 (1994), 137-161. MR 1264000 |
Reference:
|
[17] Lieberman G.M.: Sharp forms of estimates for subsolutions and supersolutions of quasilinear elliptic equations with right hand side a measure.Comm. Partial Differential Equations 18 (1993), 1991-2112. MR 1233190 |
Reference:
|
[18] Lindqvist P., Martio O.: Two theorems of N. Wiener for solutions of quasilinear elliptic equations.Acta Math. 155 (1985), 153-171. Zbl 0607.35042, MR 0806413 |
Reference:
|
[19] Littman W., Stampacchia G., Weinberger H.F.: Regular points for elliptic equations with discontinuous coefficients.Ann. Scuola Norm. Sup. Pisa. Serie III 17 (1963), 43-77. Zbl 0116.30302, MR 0161019 |
Reference:
|
[20] Malý J.: Nonlinear potentials and quasilinear PDE's.Proceedings of the International Conference on Potential Theory, Kouty, 1994, to appear. Zbl 0857.35046, MR 1404703 |
Reference:
|
[21] Maz'ya V.G.: On the continuity at a boundary point of solutions of quasi-linear elliptic equations (Russian).Vestnik Leningrad. Univ. 25 42-55 English translation Vestnik Leningrad. Univ. Math. 3 (1976), 225-242. MR 0274948 |
Reference:
|
[22] Maz'ya V.G., Khavin V.P.: Nonlinear potential theory (Russian).Uspekhi Mat. Nauk 27.6 (1972), 67-138 English translation Russian Math. Surveys 27 (1972), 71-148. |
Reference:
|
[23] Malý J., Ziemer W.P.: Fine Regularity of Solutions of Elliptic Equations.book in preparation. |
Reference:
|
[24] Meyers N.G.: Continuity properties of potentials.Duke Math. J. 42 (1975), 157-166. Zbl 0334.31004, MR 0367235 |
Reference:
|
[25] Rakotoson J.M., Ziemer W.P.: Local behavior of solutions of quasilinear elliptic equations with general structure.Trans. Amer. Math. Soc. 319 (1990), 747-764. Zbl 0708.35023, MR 0998128 |
Reference:
|
[26] Skrypnik I.V.: Nonlinear Elliptic Boundary Value Problems.Teubner Verlag, Leipzig (1986). Zbl 0617.35001, MR 0915342 |
Reference:
|
[27] Trudinger N.S.: On Harnack type inequalities and their application to quasilinear elliptic equations.Comm. Pure Appl. Math. 20 (1967), 721-747. Zbl 0153.42703, MR 0226198 |
Reference:
|
[28] Wiener N.: Certain notions in potential theory.J. Math. Phys. 3 (1924), 24-5 Reprinted in: Norbert Wiener: Collected works. Vol. 1 (1976), MIT Press, pp. 364-391. MR 0532698 |
. |