Title:
|
Sequential closures of $\sigma$-subalgebras for a vector measure (English) |
Author:
|
Ricker, Werner J. |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
37 |
Issue:
|
1 |
Year:
|
1996 |
Pages:
|
91-97 |
. |
Category:
|
math |
. |
Summary:
|
Let $X$ be a locally convex space, $m: \Sigma \to X$ be a vector measure defined on a $\sigma$-algebra $\Sigma$, and $L^1(m)$ be the associated (locally convex) space of $m$-integrable functions. Let $\Sigma(m)$ denote $\{\chi_{{}_{E}}; E\in \Sigma\}$, equipped with the relative topology from $L^1(m)$. For a subalgebra $\Cal A \subseteq \Sigma$, let $\Cal A_\sigma$ denote the generated $\sigma$-algebra and $\overline{\Cal A}_s$ denote the {\sl sequential\/} closure of $\chi(\Cal A) = \{\chi_{{}_{E}}; E\in \Cal A\}$ in $L^1(m)$. Sets of the form $\overline{\Cal A}_s$ arise in criteria determining separability of $L^1(m)$; see [6]. We consider some natural questions concerning $\overline{\Cal A}_s$ and, in particular, its relation to $\chi(\Cal A_\sigma)$. It is shown that $\overline{\Cal A}_s \subseteq \Sigma (m)$ and moreover, that $\{E\in \Sigma; \chi_{{}_{E}} \in \overline{\Cal A}_s\}$ is always a $\sigma$-algebra and contains $\Cal A_\sigma$. Some properties of $X$ are determined which ensure that $\chi(\Cal A_\sigma) = \overline{\Cal A}_s$, for any $X$-valued measure $m$ and subalgebra $\Cal A \subseteq \Sigma$; the class of such spaces $X$ turns out to be quite extensive. (English) |
Keyword:
|
$\sigma $-subalgebra |
Keyword:
|
vector measure |
Keyword:
|
sequential closure |
MSC:
|
28B05 |
idZBL:
|
Zbl 0877.28011 |
idMR:
|
MR1396162 |
. |
Date available:
|
2009-01-08T18:22:14Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/118814 |
. |
Reference:
|
[1] Bourbaki N.: Topologie générale. II (Nouvelle Édition).Chapitres 5 à 10, Herman, Paris, 1974. |
Reference:
|
[2] Dunford N., Schwartz J.T.: Linear operators III; spectral operators.Wiley-Interscience, New York, 1972. MR 1009164 |
Reference:
|
[3] Floret K.: Weakly compact sets.Lecture Notes in Math., Vol.801, Springer-Verlag, Berlin and New York, 1980. Zbl 0437.46006, MR 0576235 |
Reference:
|
[4] Kluvánek I., Knowles G.: Vector measures and control systems.North Holland, Amsterdam, 1976. MR 0499068 |
Reference:
|
[5] Ricker W.J.: Criteria for closedness of vector measures.Proc. Amer. Math. Soc. 91 (1984), 75-80. Zbl 0544.28005, MR 0735568 |
Reference:
|
[6] Ricker W.J.: Separability of the $L^1$-space of a vector measure.Glasgow Math. J. 34 (1992), 1-9. MR 1145625 |
Reference:
|
[7] Schwartz L.: Radon measures on arbitrary topological spaces and cylindrical measures.Oxford University Press, Bombay, 1973. Zbl 0298.28001, MR 0426084 |
Reference:
|
[8] Thomas G.E.F.: Integration of functions in locally convex Suslin spaces.Trans. Amer. Math. Soc. 212 (1975), 61-81. MR 0385067 |
. |