Previous |  Up |  Next


Title: Special invariant operators I (English)
Author: Bureš, Jarolím
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 37
Issue: 1
Year: 1996
Pages: 179-198
Category: math
Summary: The aim of the first part of a series of papers is to give a description of invariant differential operators on manifolds with an almost Hermitian symmetric structure of the type $G/B$ which are defined on bundles associated to the reducible but undecomposable representation of the parabolic subgroup $B$ of the Lie group $G$. One example of an operator of this type is the Penrose's local twistor transport. In this part general theory is presented, and conformally invariant operators are studied in more details. (English)
Keyword: invariant operators
Keyword: Cartan connection
Keyword: almost hermitian symmetric structures
MSC: 17B56
MSC: 53C10
MSC: 53C35
MSC: 58G35
MSC: 58H10
MSC: 58J70
idZBL: Zbl 0851.58049
idMR: MR1396170
Date available: 2009-01-08T18:22:56Z
Last updated: 2012-04-30
Stable URL:
Reference: Baston R.: Almost hermitian symmetric manifolds I, Local twistor theory.Duke Math. Journal 63.1 81-112 (1991). Zbl 0724.53019, MR 1106939
Reference: Baston R.: Almost hermitian symmetric manifolds II, Differential invariants.Duke Math. Journal 63.2 113-138 (1991). Zbl 0724.53020, MR 1106940
Reference: Bailey T.N., Eastwood M.G.: Complex paraconformal manifolds; their differential geometry and twistor theory.Forum Mathematicum 3 61-103 (1991). Zbl 0728.53005, MR 1085595
Reference: Bailey T.N., Eastwood M.R., Gover A.R.: Thomas structure bundle for conformal, projective and related structures.preprint.
Reference: Čáp A., Slovák J., Souček V.: Invariant operators on manifolds with almost hermitian symmetric structures, I,II.preprints of Schrödinger Institute, Vienna, 1994.
Reference: Delanghe R., Sommen F., Souček V.: Clifford Algebra and Spinor-valued Functions.Kluwer, 1992. MR 1169463
Reference: Ochiai T.: Geometry associated with semisimple flat homogeneous spaces.Trans. Amer. Math. Soc. 152 159-193 (1970). Zbl 0205.26004, MR 0284936
Reference: Kostant B.: Lie algebra cohomology and the generalized Borel-Weil theorem.Ann. Math 74 329-387 (1961). Zbl 0134.03501, MR 0142696
Reference: Sternberg S.: Lectures on Differential Geometry.Prentice Hall, 1964. Zbl 0518.53001, MR 0193578


Files Size Format View
CommentatMathUnivCarolRetro_37-1996-1_13.pdf 272.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo