Previous |  Up |  Next

Article

Title: Indiscernibles and dimensional compactness (English)
Author: Henson, C. Ward
Author: Zlatoš, Pavol
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 37
Issue: 1
Year: 1996
Pages: 199-203
.
Category: math
.
Summary: This is a contribution to the theory of topological vector spaces within the framework of the alternative set theory. Using indiscernibles we will show that every infinite set $u S\subseteq G$ in a biequivalence vector space $\langle W,M,G\rangle$, such that $x - y \notin M$ for distinct $x,y \in u$, contains an infinite independent subset. Consequently, a class $X \subseteq G$ is dimensionally compact iff the $\pi$-equivalence $\doteq_M$ is compact on $X$. This solves a problem from the paper [NPZ 1992] by J. Náter, P. Pulmann and the second author. (English)
Keyword: alternative set theory
Keyword: nonstandard analysis
Keyword: biequivalence vector space
Keyword: compact
Keyword: dimensionally compact
Keyword: indiscernibles
Keyword: Ramsey theorem
MSC: 03H05
MSC: 46A99
MSC: 46S10
MSC: 46S20
idZBL: Zbl 0851.46052
idMR: MR1396171
.
Date available: 2009-01-08T18:23:00Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118823
.
Reference: [{GZ 1985}] Guričan J., Zlatoš P.: Biequivalences and topology in the alternative set theory.Comment. Math. Univ. Carolinae 26.3 525-552. MR 0817825
Reference: [{NPZ 1992}] Náter J., Pulmann P., Zlatoš P.: Dimensional compactness in biequivalence vector spaces.Comment. Math. Univ. Carolinae 33.4 681-688. MR 1240189
Reference: [{ŠZ 1991}] Šmíd M., Zlatoš P.: Biequivalence vector spaces in the alternative set theory.Comment. Math. Univ. Carolinae 32.3 517-544. MR 1159799
Reference: [{SVe 1981}] Sochor A., Vencovská A.: Indiscernibles in the alternative set theory.Comment. Math. Univ. Carolinae 22.4 785-798. MR 0647026
Reference: [{V 1979}] Vopěnka P.: Mathematics in the Alternative Set Theory.Teubner-Verlag Leipzig. MR 0581368
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_37-1996-1_14.pdf 186.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo