Previous |  Up |  Next

Article

Title: Varadhan's theorem for capacities (English)
Author: Gerritse, Bart
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 37
Issue: 4
Year: 1996
Pages: 667-690
.
Category: math
.
Summary: Varadhan's integration theorem, one of the corner stones of large-deviation theory, is generalized to the context of capacities. The theorem appears valid for any integral that obeys four linearity properties. We introduce a collection of integrals that have these properties. Of one of them, known as the Choquet integral, some continuity properties are established as well. (English)
Keyword: capacities
Keyword: large deviations
Keyword: Choquet integral
Keyword: Varadhan's integration theorem
MSC: 28A12
MSC: 28A25
MSC: 60F10
idZBL: Zbl 0890.28002
idMR: MR1440700
.
Date available: 2009-01-08T18:27:17Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118877
.
Reference: Berg C., Christensen J.P.R., Ressel P.: Harmonic Analysis on Semigroups.Springer, New York. Zbl 0619.43001, MR 0747302
Reference: Billingsley P.: Convergence of Probability Measures.John Wiley & Sons, New York. Zbl 0944.60003, MR 1700749
Reference: Choquet G.: Theory of capacities.Ann. Inst. Fourier (Grenoble) 5 (1954), 131-295. Zbl 0064.35101, MR 0080760
Reference: Deheuvels P.: Large deviations for rocket plumes.to appear in Statist. Nederlandica.
Reference: Dellacherie C., Meyer P.-A.: Probabilities and Potential.North Holland, Amsterdam. Zbl 0716.60001
Reference: Deuschel J.-D., Stroock D.W.: Large Deviations.Academic Press, Boston. Zbl 0791.60017
Reference: Gerritse B.: Large Deviations.Thesis, Katholieke Universiteit Nijmegen, the Netherlands.
Reference: Gerritse B.: Compact-open convergence of sequences.in Large Deviations, pp. 53-69.
Reference: Gerritse B.: The mixing theorem.in Large Deviations, pp. 70-79.
Reference: Holwerda H.: Topology and Order: some investigations motivated by Probability Theory.Thesis, Katholieke Universiteit Nijmegen, the Netherlands.
Reference: Holwerda H., Vervaat W.: Order and topology in spaces of capacities.in Topology and Order: some investigations motivated by Probability Theory, pp. 45-64.
Reference: Norberg T.: Random capacities and their distributions.Probab. Theory Related Fields 73 (1986), 281-297. Zbl 0581.60042, MR 0855227
Reference: Norberg T., Vervaat W.: Capacities on non-Hausdorff spaces.Technical Report 1989-11, Dept. of Math., Chalmers Univ. of Techn. of Göteborg, Sweden; to appear in Vervaat 1995. Zbl 0883.28002, MR 1465485
Reference: O'Brien G.L.: Sequences of capacities and their role in large deviation theory.Technical Report 92-16, Dept. of Math. & Stat., York Univ., Toronto; to appear in J. of Theoret. Probab.
Reference: O'Brien G.L.: Unilateral limits for capacities.Research notes.
Reference: O'Brien G.L., Vervaat W.: Capacities, large deviations and loglog laws.in S. Cambanis, G. Samorodnitsky & M.S. Taqqu (Eds.), Stable Processes, Birkhäuser, Boston, pp. 43-83. MR 1119351
Reference: O'Brien G.L., Vervaat W.: Compactness in the theory of large deviations.Technical Report 93-23, Dept. of Math. & Stat., York Univ., Toronto; to appear in Stochastic Process. Appl. Zbl 0824.60019, MR 1327949
Reference: O'Brien G.L., Vervaat W.: How subadditive are subadditive capacities?.Comment. Math. Univ. Carolinae 35 (1994), 311-324. Zbl 0808.28001, MR 1286578
Reference: Varadhan S.R.S.: Asymptotic probabilities and differential equations.Comm. Pure Appl. Math. 19 (1966), 261-286. Zbl 0147.15503, MR 0203230
Reference: Varadhan S.R.S.: Large Deviations and Applications.SIAM, Philadelphia. Zbl 0661.60040, MR 0758258
Reference: Vervaat W.: Random upper semicontinuous functions and extremal processes.Technical Report MS-R8801, Centrum voor Wisk. en Inf., Amsterdam; to appear in Vervaat 1995. Zbl 0882.60003, MR 1465481
Reference: Vervaat W. (Ed.): Probability and Lattices.Volume 110 of CWI Tracts, Centrum voor Wisk. en Inf., Amsterdam, to appear. Zbl 0865.00051, MR 1465480
Reference: Wilker P.: Adjoint product and hom functors in general topology.Pacific J. Math. 34 (1970), 269-283. Zbl 0205.52703, MR 0270329
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_37-1996-4_2.pdf 323.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo