Full entry |
PDF
(0.2 MB)
Feedback

semilinear equation of evolution; mild solutions; measure of noncompactness; sublinear measure

References:

[1] Banaś J., Goebel K.: **Measures of Noncompactness in Banach Spaces**. Lect. Notes Pure Appl. Math. Marcel Dekker New York and Basel (1980). MR 0591679

[2] Banaś J., Hajnosz A., Wȩdrychowicz S.: **Some generalization of Szufla's theorem for ordinary differential equations in Banach space**. Bull. Pol. Acad. Sci., Math. XXIX , No 9-10 (1981), 459-464. MR 0646334

[3] Coddington E.A., Levinson N.: **Theory of Ordinary Differential Equations**. Mc Graw-Hill New York-Toronto-London (1955). MR 0069338 | Zbl 0064.33002

[4] Friedman A.: **Partial Differential Equations**. Krieger Publishing Company Huntington New York (1976). MR 0454266

[5] Kato T.: **Quasi-linear equations of evolution with application to partial differential equations**. Lect. Notes Math. Springer Verlag 448 (1975), 25-70. MR 0407477

[7] Pazy A.: **A class of semi-linear equations of evolution**. Isr. J. Math. 20 (1975), 22-36. MR 0374996 | Zbl 0305.47022

[8] Pazy A.: **Semigroup of Linear Operators and Applications to Partial Differential Equations**. Springer-Verlag New York (1983). MR 0710486

[9] Rolewicz S.: **Functional Analysis and Control Theory Linear Systems**. Reidel Publishing Company Dordrecht (1987). MR 0920371 | Zbl 0633.93002