Previous |  Up |  Next

Article

Title: Random coincidence degree theory with applications to random differential inclusions (English)
Author: Tarafdar, E.
Author: Watson, P.
Author: Yuan, Xian-Zhi
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 37
Issue: 4
Year: 1996
Pages: 725-748
.
Category: math
.
Summary: The aim of this paper is to establish a random coincidence degree theory. This degree theory possesses all the usual properties of the deterministic degree theory such as existence of solutions, excision and Borsuk's odd mapping theorem. Our degree theory provides a method for proving the existence of random solutions of the equation $Lx\in N(\omega,x)$ where $L:\text{\it dom}\kern 1.3pt L\subset X\to Z$ is a linear Fredholm mapping of index zero and $N:\Omega\times \overline{G}\to 2^Z$ is a noncompact Carathéodory mapping. Applications to random differential inclusions are also considered. (English)
Keyword: Carathéodory upper semicontinuous
Keyword: random (stochastic) topological degree
Keyword: Souslin family
Keyword: measurable space
MSC: 34A60
MSC: 34F05
MSC: 47H04
MSC: 47H11
MSC: 47H40
MSC: 47N20
MSC: 58C30
idZBL: Zbl 0886.47030
idMR: MR1440704
.
Date available: 2009-01-08T18:27:35Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118881
.
Related article: http://dml.cz/handle/10338.dmlcz/118976
.
Reference: [1] Akashi W.Y.: Equivalence theorems and coincidence degree for multivalued mappings.Osaka J. Math. 25.1 (1988), 33-47. MR 0937185
Reference: [2] Berge C.: Espaces Topologiques.Dunod, Paris (1959). Zbl 0088.14703, MR 0105663
Reference: [3] Engelking R.: General Topology.Sigma Series in Pure Mathematics, vol. 6, Heldermann Verlag, Berlin (1989). Zbl 0684.54001, MR 1039321
Reference: [4] Engl H.: Random fixed point theorems for multivalued mappings.Pacific J. Math. 76 (1978), 351-360. Zbl 0355.47035, MR 0500323
Reference: [5] Fan K.: Fixed points and minimax theorems in locally convex topological linear spaces.Proc. Nat. Acad. Sci. U.S.A. 38 (1952), 121-126. MR 0047317
Reference: [6] Friedman A.: Partial Differential Equations.Holt, Rinehart, Winston, New York (1969). Zbl 0224.35002, MR 0445088
Reference: [7] Gaines R.E., Mawhin J.L.: Coincidence degree and nonlinear differential equations.Springer-Verlag Lecture Notes No. 568 (1977). Zbl 0339.47031, MR 0637067
Reference: [8] Gaines R.E., Peterson J.K.: Periodic solutions to differential inclusions.Nonlinear Analysis 5 (1981), 1109-1131. Zbl 0475.34023, MR 0636724
Reference: [9] Gilbarg D., Trudinger N.S.: Elliptic Partial Differential Equations of Second Order.Springer-Verlag New York (1983). Zbl 0562.35001, MR 0737190
Reference: [10] Glicksberg I.: A further generalization of the Kakutani fixed point theorem with applications to Nash equilibrium points.Proc. Amer. Math. Soc. 3 (1952), 170-174. MR 0046638
Reference: [11] Himmelberg C.J.: Measurable relations.Fund. Math. 87 (1975), 53-72. Zbl 0296.28003, MR 0367142
Reference: [12] Lasota A., Opial Z.: An application of the Kakutani-Ky Fan Theorem in the theory of ordinary differential equations.Bull. Acad. Polon. Sci. 13 (1965), 781-786. Zbl 0151.10703, MR 0196178
Reference: [13] Lloyd N.G.: Degree Theory.Cambridge University Press (1978). Zbl 0367.47001, MR 0493564
Reference: [14] Ma T.W.: Topological degree for set valued compact vector fields in locally convex spaces.Dissertationes Math. 92 (1972), 1-43.
Reference: [15] Mawhin J.: Equivalence theorems for nonlinear operator-equations and coincidence degree theory for some mappings in locally convex topological vector spaces.J. Differential Equations 12 (1972), 610-636. Zbl 0244.47049, MR 0328703
Reference: [16] Nowak A.: Applications of random fixed point theorems in the theory of generalized random differential equations.Bull. Pol. Acad. Sci. 34 (1986), 487-494. Zbl 0617.60059, MR 0874895
Reference: [17] Nussbaum R.D.: The fixed point index and fixed point theorems for $k$-set contractions.Doctoral Dissertation, University of Chicago, Chicago, Ill., 1969.
Reference: [18] Nussbaum R.D.: The fixed point index for condensing maps.Ann. Mat. Pura. Appl. 89 (1971), 217-258. MR 0312341
Reference: [19] Petryshyn W.V., Fitzpatrick P.M.: A degree theory, fixed point theorems and mapping theorems for multivalued noncompact mappings.Trans. Amer. Math. Soc. 194 (1974), 1-25. Zbl 0297.47049, MR 2478129
Reference: [20] Pruszko T.: A Coincidence degree for $L$-compact convex-valued mappings and its applications to the Picard problem for orientor fields.Bull. Acad. Pol. Sci. 27 (1979), 895-902. MR 0616183
Reference: [21] T. Pruszko: Topological degree methods in multivalued boundary value problems.Nonlinear Analysis 5 (1981), 959-973. MR 0633011
Reference: [22] Robertson A.P.: On measurable selections.Proc. R.S.E. (A) 72 (1972/73), 1-7. MR 0399398
Reference: [23] Rogers C.A.: Hausdorff Measures.Cambridge University Press (1970). Zbl 0204.37601, MR 0281862
Reference: [24] Sadowski B.W.: Limit-compact and condensing operators.Russian Math. Surveys 27 (1972), 85-155. MR 0428132
Reference: [25] Saint-Beuve M.F.: On the existence of von Neumann-Aumann's theorem.J. Functional Analysis 17 (1974), 112-129. MR 0374364
Reference: [26] Saks S.: Theory of the Integral.Dover, New York (1968). MR 0167578
Reference: [27] Tan K.K., Yuan X.Z.: On deterministic and random fixed points.Proc. Amer. Math. Soc. 119 849-856 (1993). Zbl 0801.47044, MR 1169051
Reference: [28] Tarafdar E., Teo S.K.: On the existence of solutions of the equation $Lx \in Nx$ and a coincidence degree theory.J. Austral. Math. Soc. Ser. A. 28 (1979), 139-173. Zbl 0431.47038, MR 0550958
Reference: [29] Tarafdar E., Thompson H.B.: On the solvability of nonlinear noncompact operator equations.J. Austral. Math. Soc. Ser. A 43 (1987), 103-126. Zbl 0623.47072, MR 0886808
Reference: [30] Tarafdar E., Watson P., Yuan X.Z.: Jointly measurable selections of condensing random upper semi-continuous set-valued mappings and its applications to random fixed points.Nonlinear Analysis, T.M.A. (in press), 1996.
Reference: [31] Wagner D.H.: Survey of measurable selection theorems.SIAM J. Control. Optim. 15 859-903 (1977). Zbl 0407.28006, MR 0486391
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_37-1996-4_6.pdf 334.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo