Title:
|
OCA and towers in $\Cal P(\Bbb N)/fin$ (English) |
Author:
|
Farah, Ilijas |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
37 |
Issue:
|
4 |
Year:
|
1996 |
Pages:
|
861-866 |
. |
Category:
|
math |
. |
Summary:
|
We shall show that Open Coloring Axiom has different influence on the algebra $\Cal P(\Bbb N)/fin$ than on $\Bbb N^\Bbb N/fin$. The tool used to accomplish this is forcing with a Suslin tree. (English) |
Keyword:
|
Open Coloring Axiom |
Keyword:
|
dense sets of reals |
Keyword:
|
towers |
Keyword:
|
forcing |
Keyword:
|
Suslin trees |
MSC:
|
03E05 |
MSC:
|
03E35 |
MSC:
|
03E50 |
MSC:
|
04A20 |
MSC:
|
06A05 |
idZBL:
|
Zbl 0887.03037 |
idMR:
|
MR1440716 |
. |
Date available:
|
2009-01-08T18:28:30Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/118893 |
. |
Reference:
|
[1] Abraham U., Rubin M., Shelah S.: On the consistency of some partition theorems for continuous colorings, and the structure of $\aleph_1$-dense real order types.Ann. of Pure and Appl. Logic 29 (1985), 123-206. MR 0801036 |
Reference:
|
[2] Baumgartner J.: All $\aleph_1$-dense sets of reals can be isomorphic.Fundamenta Mathematicae 79 (1973), 100-106. Zbl 0274.02037, MR 0317934 |
Reference:
|
[3] Devlin K., Johnsbråten H.: The Souslin Problem.Springer Lecture Notes in Mathematics, # 405 (1974). MR 0384542 |
Reference:
|
[4] Dordal P.L.: Towers in $[ømega]^ømega$ and $^ømegaømega$.Ann. of Pure and Appl. Logic 247-277 (1989), 45.3. MR 1032832 |
Reference:
|
[5] Fremlin D.: Consequences of Martin's Axiom.Cambridge University Press (1984). Zbl 0551.03033 |
Reference:
|
[6] Gruenhage G.: Cosmicity of cometrizable spaces.Trans. AMS 313 (1989), 301-315. Zbl 0667.54012, MR 0992600 |
Reference:
|
[7] Todorčević S.: Partition Problems in Topology.AMS Providence, Rhode Island (1989). MR 0980949 |
Reference:
|
[8] Todorčević S.: Oscillations of sets of integers.to appear. MR 1601383 |
Reference:
|
[9] Veličković B.: OCA and automorphisms of $\Cal P(ømega)/fin$.Topology Appl. 49 (1993), 1-13. MR 1202874 |
Reference:
|
[10] Weese M.: personal communication.. |
. |