[1] Alliprantis C., Brown D., Burkinshaw O.: Existence and Optimality of Competitive Equilibria. Springer-Verlag, Berlin, 1988.
[2] Arrow K., Kurz M.: Public Investment, The Rate of Return and Optimal Fisical Policy. The John's Hopkins Press, Baltimore, Maryland, 1970.
[5] Buttazzo G.: 
Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations. Pitman Research Notes in Mathematics, Vol. 207, Longman Scientific and Technical, Harlow, Essex, U.K., 1989. 
MR 1020296 | 
Zbl 0669.49005 
[7] Diestel J., Uhl J.J.: 
Vector Measures. Math. Surveys, Vol. 15, AMS, Providence, Rhode Island, 1977. 
MR 0453964 | 
Zbl 0521.46035 
[9] Evstigneev I.: 
Optimal stochastic programs and their stimulating prices. in: Mathematics Models in Economics, eds. J. Los, M. Los, North Holland, Amsterdam, 1974, pp. 219-252. 
MR 0381650 | 
Zbl 0291.90048 
[10] Kravvaritis D., Papageorgiou N.S.: 
Sensitivity analysis of a discrete time multisector growth model with uncertainty. Stochastic Models 9 (1993), 158-178. 
MR 1213065 | 
Zbl 0806.90015 
[11] Papageorgiou N.S.: 
Convergence theorems for Banach space valued integrable multifunctions. Intern. J. Math. and Math. Sci. 10 (1987), 433-442. 
MR 0896595 | 
Zbl 0619.28009 
[12] Papageorgiou N.S.: 
Optimal programs and their price characterization in a multisector growth model with uncertainty. Proc. Amer. Math. Soc. 22 (1994), 227-240. 
MR 1195728 | 
Zbl 0839.90019 
[13] Peleg B., Ryder H.: On optimal consumption plans in a multisector economy. Review of Economic Studies 39 (1972), 159-169.
[14] Taksar M.I.: 
Optimal planning over infinite time interval under random factors. in: Mathematical Models in Economics, eds. J. Los, M. Los, North Holland, Amsterdam, 1974, pp. 284-298. 
MR 0401104 
[15] Weitzman M.L.: 
Duality theory for infinite horizon convex models. Management Sci. 19 (1973), 783-789. 
MR 0337334 | 
Zbl 0262.90052