Previous |  Up |  Next


Title: On a nonstationary discrete time infinite horizon growth model with uncertainty (English)
Author: Papageorgiou, Nikolaos S.
Author: Papalini, Francesca
Author: Vercillo, Susanna
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 38
Issue: 1
Year: 1997
Pages: 193-202
Category: math
Summary: In this paper we examine a nonstationary discrete time, infinite horizon growth model with uncertainty. Under very general hypotheses on the data of the model, we establish the existence of an optimal program and we show that the values of the finite horizon problems tend to that of the infinite horizon as the end of the planning period approaches infinity. Finally we derive a transversality condition for optimality which does not involve dual variables (prices). (English)
Keyword: growth model
Keyword: discrete time
Keyword: infinite horizon
Keyword: finite horizon
Keyword: uncertainty
Keyword: utility function
Keyword: technology multifunction
Keyword: optimal program
Keyword: transversality condition
MSC: 49J10
MSC: 49K10
MSC: 90A16
MSC: 90A20
MSC: 91B62
idZBL: Zbl 0887.90035
idMR: MR1455484
Date available: 2009-01-08T18:30:10Z
Last updated: 2012-04-30
Stable URL:
Reference: [1] Alliprantis C., Brown D., Burkinshaw O.: Existence and Optimality of Competitive Equilibria.Springer-Verlag, Berlin, 1988.
Reference: [2] Arrow K., Kurz M.: Public Investment, The Rate of Return and Optimal Fisical Policy.The John's Hopkins Press, Baltimore, Maryland, 1970.
Reference: [3] Aumann R.: Markets with a continuum of traders.Econometrica 32 (1964), 39-50. Zbl 0137.39003, MR 0172689
Reference: [4] Brown A., Pearcy C.: Introduction to Operator Theory.Springer-Verlag, New York, 1977. Zbl 0371.47001, MR 0511596
Reference: [5] Buttazzo G.: Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations.Pitman Research Notes in Mathematics, Vol. 207, Longman Scientific and Technical, Harlow, Essex, U.K., 1989. Zbl 0669.49005, MR 1020296
Reference: [6] Day M.: Normed Linear Spaces.3rd edition, Springer-Verlag, Berlin, 1973. Zbl 0583.00016, MR 0344849
Reference: [7] Diestel J., Uhl J.J.: Vector Measures.Math. Surveys, Vol. 15, AMS, Providence, Rhode Island, 1977. Zbl 0521.46035, MR 0453964
Reference: [8] Dugundji J.: Topology.Allyn and Bacon Inc., Boston, 1966. Zbl 0397.54003, MR 0193606
Reference: [9] Evstigneev I.: Optimal stochastic programs and their stimulating Mathematics Models in Economics, eds. J. Los, M. Los, North Holland, Amsterdam, 1974, pp. 219-252. Zbl 0291.90048, MR 0381650
Reference: [10] Kravvaritis D., Papageorgiou N.S.: Sensitivity analysis of a discrete time multisector growth model with uncertainty.Stochastic Models 9 (1993), 158-178. Zbl 0806.90015, MR 1213065
Reference: [11] Papageorgiou N.S.: Convergence theorems for Banach space valued integrable multifunctions.Intern. J. Math. and Math. Sci. 10 (1987), 433-442. Zbl 0619.28009, MR 0896595
Reference: [12] Papageorgiou N.S.: Optimal programs and their price characterization in a multisector growth model with uncertainty.Proc. Amer. Math. Soc. 22 (1994), 227-240. Zbl 0839.90019, MR 1195728
Reference: [13] Peleg B., Ryder H.: On optimal consumption plans in a multisector economy.Review of Economic Studies 39 (1972), 159-169.
Reference: [14] Taksar M.I.: Optimal planning over infinite time interval under random Mathematical Models in Economics, eds. J. Los, M. Los, North Holland, Amsterdam, 1974, pp. 284-298. MR 0401104
Reference: [15] Weitzman M.L.: Duality theory for infinite horizon convex models.Management Sci. 19 (1973), 783-789. Zbl 0262.90052, MR 0337334


Files Size Format View
CommentatMathUnivCarolRetro_38-1997-1_19.pdf 218.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo