Previous |  Up |  Next

Article

Title: Antiproximinal sets in the Banach space $c(X)$ (English)
Author: Cobzaş, S.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 38
Issue: 2
Year: 1997
Pages: 247-253
.
Category: math
.
Summary: If $X$ is a Banach space then the Banach space $c(X)$ of all $X$-valued convergent sequences contains a nonvoid bounded closed convex body $V$ such that no point in $C(X)\setminus V$ has a nearest point in $V$. (English)
Keyword: antiproximinal sets
Keyword: best approximation
MSC: 41A50
MSC: 41A65
MSC: 46B20
MSC: 46B99
idZBL: Zbl 0887.41029
idMR: MR1455491
.
Date available: 2009-01-08T18:30:33Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118922
.
Reference: [1] Chakalov V.L.: Extremal elements in some normed spaces.Comptes Rendus Acad. Bulgare des Sciences 36 (1983), 173-176. MR 0709005
Reference: [2] Cobzaş S.: Very non-proximinal sets in $c_0$ (in Romanian).Rev. Anal. Numer. Teoria Approx. 2 (1973), 137-141. MR 0393980
Reference: [3] Cobzaş S.: Antiproximinal sets in some Banach spaces.Math. Balkanica 4 (1974), 79-82. MR 0377381
Reference: [4] Cobzaş S.: Convex antiproximinal sets in the spaces $c_0$ and $c$ (in Russian).Matem. Zametki 17 (1975), 449-457. MR 0407567
Reference: [5] Cobzaş S.: Antiproximinal sets in Banach spaces of continuous functions.Anal. Numér. Théorie Approx. 5 (1976), 127-143. MR 0477577
Reference: [6] Cobzaş S.: Antiproximinal sets in Banach spaces of $c_0$-type.Rev. Anal. Numér. Théorie Approx. 7 (1978), 141-145. MR 0530744
Reference: [7] Cobzaş S.: Support functionals of the unit ball in Banach spaces of bounded functions.Seminar on Mathematical Analysis, Babeş-Bolyai University Research Seminaries, Preprint nr. 4, pp.85-90, Cluj-Napoca, 1986.
Reference: [8] Dunford N., Schwartz J.T.: Linear Operators I. General Theory.Interscience, New York, 1958. Zbl 0084.10402, MR 0117523
Reference: [9] Edelstein M., Thompson A.C.: Some results on nearest points and support properties of convex sets in $c_0$.Pacific J. Math. 40 (1972), 553-560. MR 0308741
Reference: [10] Fonf V.P.: On antiproximinal sets in spaces of continuous functions on compacta (in Russian).Matem. Zametki 33 (1983), 549-558. MR 0704442
Reference: [11] Fonf V.P.: On strongly antiproximinal sets in Banach spaces (in Russian).Matem. Zametki 47 (1990), 130-136. MR 1048552
Reference: [12] Holmes R.B.: Geometric Functional Analysis and its Applications.Springer Verlag, BerlinHeidelberg-New York, 1975. Zbl 0336.46001, MR 0410335
Reference: [13] Klee V.: Remarks on nearest points in normed linear spaces.Proc. Colloq. Convexity, Copenhagen 1965, pp.161-176, Copenhagen, 1967. Zbl 0156.36303, MR 0223859
Reference: [14] Phelps R.R.: Subreflexive normed linear spaces.Archiv der Math. 8 (1957), 444-450. MR 0099588
Reference: [15] Phelps R.R.: Some subreflexive Banach spaces.Archiv der Math. 10 (1959), 162-169. Zbl 0087.10704, MR 0107162
Reference: [16] Sierpinski W.: Cardinal and Ordinal Numbers.Warszawa, 1965. Zbl 0131.24801, MR 0194339
Reference: [17] Singer I.: Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces.Editura Academiei and Springer Verlag, Bucharest-Berlin, 1970. Zbl 0197.38601, MR 0270044
Reference: [18] Stečkin S.B.: On the approximation properties of sets in normed linear spaces (in Russian).Rev. Math. Pures et Appl. 8 (1963), 5-18. MR 0155168
Reference: [19] Zukhovickij S.I.: On minimal extensions of linear functionals in spaces of continuous functions (in Russian).Izvestija Akad. Nauk SSSR, ser. matem. 21 (1957), 409-422. MR 0088702
Reference: [20] Werner D.: Funktionalanalysis.Springer Verlag, Berlin-Heidelberg-New York, 1995. Zbl 1161.46001, MR 1787146
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_38-1997-2_5.pdf 196.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo