Previous |  Up |  Next

Article

Title: A note on the structure of quadratic Julia sets (English)
Author: Keller, Karsten
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 38
Issue: 2
Year: 1997
Pages: 395-406
.
Category: math
.
Summary: In a series of papers, Bandt and the author have given a symbolic and topological description of locally connected quadratic Julia sets by use of special closed equivalence relations on the circle called Julia equivalences. These equivalence relations reflect the landing behaviour of external rays in the case of local connectivity, and do not apply completely if a Julia set is connected but fails to be locally connected. However, rational external rays land also in the general case. The present note shows that for a quadratic map which does not possess an irrational indifferent periodic orbit and has a connected Julia set the following holds: The equivalence relation induced by the landing behaviour of rational external rays forms the rational part of a Julia equivalence. (English)
Keyword: quadratic Julia set
Keyword: Julia equivalence
Keyword: external ray
MSC: 30D05
MSC: 37B99
MSC: 37E99
MSC: 54H20
MSC: 58F03
MSC: 58F08
MSC: 58F23
idZBL: Zbl 0893.58025
idMR: MR1455508
.
Date available: 2009-01-08T18:35:05Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118939
.
Reference: [1] Bandt C., Keller K.: Self-similar sets 2. A simple approach to the topological structure of fractals.Math. Nachr. 145 (1991), 27-39. Zbl 0824.28007, MR 1138368
Reference: [2] Bandt C., Keller K.: Symbolic dynamics for angle-doubling on the circle, I. The topology of locally connected Julia sets.in: Ergodic Theory and Related Topics (U. Krengel, K. Richter, V. Warstat, eds.), Lecture Notes in Math. 1514, Springer, 1992, pp.1-23. Zbl 0768.58013, MR 1179168
Reference: [3] Bandt C., Keller K.: Symbolic dynamics for angle-doubling on the circle, II. Symbolic description of the abstract Mandelbrot set.Nonlinearity 6 (1993), 377-392. Zbl 0785.58021, MR 1223739
Reference: [4] Beardon A.: Iteration of Rational Functions.Springer, 1992. Zbl 1120.30300, MR 1128089
Reference: [5] Branner B.: The Mandelbrot set.Proc. Symp. Appl. Math. 39 (1989), 75-105. MR 1010237
Reference: [6] Carleson L., Gamelin T.: Complex Dynamics.Springer-Verlag, 1993. Zbl 0782.30022, MR 1230383
Reference: [7] Douady A.: Descriptions of compact sets in $C$.in: Topological Methods in Modern Mathematics, Publish or Perish 1993, pp.429-465. MR 1215973
Reference: [8] Douady A., Hubbard J.: Étude dynamique des polynômes complexes.Publications Mathématiques d'Orsay 84-02 (1984) (première partie) and 85-02 (1985) (deuxième partie). Zbl 0571.30026
Reference: [9] Douady A., Hubbard J.: On the dynamics of polynomial-like mappings.Ann. Sci. Ecole Norm. Sup. (4) 18 (1985), 287-343. Zbl 0587.30028, MR 0816367
Reference: [10] Goldberg L., Milnor J.: Fixed points of polynomial maps I/II.Ann. Scient. Ec. Norm. Sup., $4^e$ série, t.25/26 (1992/1993). MR 1209913
Reference: [11] Hubbard J.H.: Local connectivity of Julia sets and bifurcation loci: Three Theorems of J.-C. Yoccoz.in: Topological Methods in Modern Mathematics, Publish or Perish 1993, pp.467-511. Zbl 0797.58049, MR 1215974
Reference: [12] Keller K.: The abstract Mandelbrot set - an atlas of abstract Julia sets.in: Topology, Measures, and Fractals (C. Bandt, J. Flachsmeyer, H. Haase, eds.), Akademie Verlag, Berlin, 1992, pp.76-81. Zbl 0795.58032, MR 1226281
Reference: [13] Keller K.: Symbolic dynamics for angle-doubling on the circle, III. Sturmian sequences and the quadratic map.Ergod. Th. and Dynam. Sys. 14 (1994), 787-805. Zbl 0830.58011, MR 1304142
Reference: [14] Keller K.: Symbolic dynamics for angle-doubling on the circle, IV. Equivalence of abstract Julia sets.Atti del Seminario dell'Universita de Modenà XLII (1994), 301-321. Zbl 0830.58012, MR 1310452
Reference: [15] Keller K.: Invarante Faktoren, Juliaäquivalenzen und die abstrakte Mandelbrotmenge.Habilitationsschrift, Universität Greifswald, 1996.
Reference: [16] Keller K.: Julia equivalences and abstract Siegel disks.submitted. Zbl 0945.30024
Reference: [17] Lau E., Schleicher D.: Internal addresses in the Mandelbrot set and irreducibility of polynomials.Stony Brook IMS preprint, 1994/19.
Reference: [18] Lavaurs P.: Une déscription combinatoire de l'involution définie par M sur les rationnels à dénominateur impair.C.R. Acad. Sc. Paris Série I, t.303 (1986), 143-146. Zbl 0663.58018, MR 0853606
Reference: [19] Lyubich M.Yu.: Geometry of quadratic polynomials: Moduli, rigidity, and local connectivity.Stony Brook IMS preprint 1993/9.
Reference: [20] Milnor J.: Dynamics on one complex variable: Introductory Lectures.preprint, Stony Brook, 1990. MR 1721240
Reference: [21] Milnor J.: Local Connectivity of Julia sets: Expository Lectures.preprint, Stony Brook, 1992. Zbl 1107.37305, MR 1765085
Reference: [22] Milnor J.: Errata for `Local Connectivity of Julia sets: Expository Lectures'.preprint, Stony Brook, 1992. MR 1765085
Reference: [23] Milnor J.: Periodic orbits, external rays and the Mandelbrot set; An expository account.preprint 1995, Lecture Notes in Mathematics 1342 (1988), 465-563. MR 1755445
Reference: [24] McMullen C.: Complex Dynamics and Renormalization.Annals of Mathematics Studies, Princeton University Press, Princeton, 1994. Zbl 0822.30002, MR 1312365
Reference: [25] McMullen C.: Frontiers in complex dynamics.Bull. Amer. Math. Soc. (N.S.) 31 (1994), 155-172. Zbl 0807.30013, MR 1260523
Reference: [26] Penrose C.S.: On quotients of the shift associated with dendrite Julia sets of quadratic polynomials.PhD thesis, University of Warwick, 1990.
Reference: [27] Penrose C.S.: Quotients of the shift associated with dendrite Julia sets.preprint, London, 1994.
Reference: [28] Schleicher D.: Internal Addresses in the Mandelbrot set and irreducibility of polynomials.PhD thesis, Cornell University, 1994.
Reference: [29] Schleicher D.: The structure of the Mandelbrot set.preprint, München, 1995.
Reference: [30] Schleicher D.: The dynamics of iterated polynomials.in preparation.
Reference: [31] Steinmetz N.: Rational iteration.De Gruyter Studies in Mathematics 16 (1993). Zbl 0773.58010, MR 1224235
Reference: [32] Thurston W.P.: On the combinatorics and dynamics of iterated rational maps.preprint, Princeton, 1985.
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_38-1997-2_22.pdf 257.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo