Previous |  Up |  Next

Article

Title: Operational quantities (English)
Author: Martinón, Antonio
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 38
Issue: 3
Year: 1997
Pages: 471-484
.
Category: math
.
Summary: In this paper we consider maps called operational quantities, which assign a non-negative real number to every operator acting between Banach spaces, and we obtain relations between the kernels of these operational quantities and the classes of operators of the Fredholm theory. (English)
Keyword: operational quantities
Keyword: Fredholm theory
MSC: 47A53
MSC: 47A55
idZBL: Zbl 1119.47014
idMR: MR1485069
.
Date available: 2009-01-08T18:35:34Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118946
.
Reference: [1] Fajnshtejn A.S.: On measures of noncompactness of linear operators and analogs of the minimal modulus for semi-Fredholm operators (in Russian).Spektr. Teor. Oper. 6 (1985), 182-195.
Reference: [2] Galaz-Fontes F.: Measures of noncompactness and upper semi-Fredholm perturbation theorems.Proc. Amer. Math. Soc. 118 (1993), 891-897. Zbl 0782.47013, MR 1151810
Reference: [3] Goldberg S.: Unbounded Linear Operators.McGraw-Hill, New York, 1966. Zbl 1152.47001, MR 0200692
Reference: [4] González M., Martinón A.: Operational quantities derived from the norm and measures of noncompactness.Proc. R. Ir. Acad. 91 A (1991), 63-70. MR 1173159
Reference: [5] González M., Martinón A.: Operational quantities derived from the norm and generalized Fredholm theory.Comment. Math. Univ. Carolinae 32 (1991), 645-657. MR 1159811
Reference: [6] González M., Martinón A.: Fredholm theory and space ideals.Boll. U.M.I. 7 B (1993), 473-488. MR 1223653
Reference: [7] González M., Martinón A.: Note on operational quantities and the Mil'man isometry spectrum.Rev. Acad. Canar. Cienc. 3 (1991), 103-111. MR 1175602
Reference: [8] González M., Martinón A.: On incomparability of Banach spaces.in: Functional Analysis and Operator Theory, pp. 161-174, Banach Center Publications, vol. 30, Institute of Mathematics, Polish Academy of Sciences, Warzawa, 1994. MR 1285605
Reference: [9] González M., Martinón A.: Operational quantities characterizing the semi-Fredholm operators.Studia Math. 114 (1995), 13-27. MR 1330214
Reference: [10] Lebow A., Schechter M.: Semigroups of operators and measures of noncompactness.J. Funct. Anal. 7 (1971), 1-26. Zbl 0209.45002, MR 0273422
Reference: [11] Martinón A.: Generating real maps on a biordered set.Comment. Math. Univ. Carolinae 32 (1991), 265-272. MR 1137787
Reference: [12] Pietsch A.: Operators Ideals.North-Holland, Amsterdam, 1980. MR 0582655
Reference: [13] Rakocevic V.: Measures of non-strict-singularity of operators.Mat. Vesnik 35 (1983), 79-82. Zbl 0532.47006, MR 0724182
Reference: [14] Schechter M.: Quantities related to strictly singular operators.Indiana Univ. Math. J. 21 (1972), 1061-1071. Zbl 0274.47007, MR 0295103
Reference: [15] Schechter M., Whitley R.: Best Fredholm perturbation theorems.Studia Math. 90 (1988), 175-190. Zbl 0611.47010, MR 0959522
Reference: [16] Sedaev A.A.: The structure of certain linear operators (in Russian).Mat. Issled. 5 (1970), 166-175. MR 43#2540; Zbl 247#47005. MR 0276800
Reference: [17] Tylli H.-O.: On the asymptotic behaviour of some quantities related to semi-Fredholm operators.J. London Math. Soc. (2) 31 (1985), 340-348. Zbl 0582.47004, MR 0809955
Reference: [18] Weis L.: Über striktle singulare und striktle cosingulare Operatoren in Banachräumen.Diss., Univ. Bonn, 1974.
Reference: [19] Zemánek J.: Geometric characteristics of semi-Fredholm operators and their asymptotic behaviour.Studia Math. 80 (1984), 219-234. MR 0783991
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_38-1997-3_5.pdf 228.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo