Previous |  Up |  Next

Article

Title: Fixed points for multifunctions on generalized metric spaces with applications to a multivalued Cauchy problem (English)
Author: Petruşel, Adrian
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 38
Issue: 4
Year: 1997
Pages: 657-663
.
Category: math
.
Summary: The purpose of this paper is to prove an existence result for a multivalued Cauchy problem using a fixed point theorem for a multivalued contraction on a generalized complete metric space. (English)
Keyword: generalized metric space
Keyword: multivalued contraction
Keyword: fixed points
MSC: 34A12
MSC: 34A60
MSC: 47H10
MSC: 47N20
MSC: 54C60
MSC: 54H25
idZBL: Zbl 0938.34005
idMR: MR1603686
.
Date available: 2009-01-08T18:37:08Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118964
.
Reference: [1] Aubin J.P., Cellina A.: Differential Inclusions.Springer Verlag, Berlin, 1984. Zbl 0538.34007, MR 0755330
Reference: [2] Aumann R.J.: Integrals of set-valued functions.J. Math. Anal. Appl. 12 (1965), 1-12. Zbl 0163.06301, MR 0185073
Reference: [3] Covitz H., Nadler S.B., Jr.: Multivalued contraction mappings in generalized metric spaces.Israel J. Math. 8 (1970), 5-11. MR 0263062
Reference: [4] Hiai F., Umegake H.: Integrals, conditional expectations and martingales of multivalued functions.J. Multivariate Anal. 7 (1977), 149-182. MR 0507504
Reference: [5] Himmelberg C.J., Van Vleck F.S.: Lipschitzian generalized differential equations.Rend. Sem. Mat. Univ. Parma 48 (1973), 159-169. Zbl 0289.49009, MR 0340692
Reference: [6] Jung C.K.: On generalized complete metric space.Bull. A.M.S. 75 (1969), 113-116. MR 0234446
Reference: [7] Kisielewicz M.: Differential Inclusions and Optimal Control.Kluwer Acad. Publ., Dordrecht, 1991. MR 1135796
Reference: [8] Kuratowski K., Ryll-Nardzewski C.: A general theorem on selectors.Bull. Polish Acad. Sci. 13 (1965), 397-403. Zbl 0152.21403, MR 0188994
Reference: [9] Luxemburg W.A.J.: On the convergence of successive approximations in the theory of ordinary differential equations, II.Indag. Math. 20 (1958), 540-546. MR 0124554
Reference: [10] Petruşel A.: On a theorem by Roman Wegrzyk.Demonstratio Math. 29 (1996), 637-641. MR 1415506
Reference: [11] Wegrzyk R.: Fixed point theorems for multivalued functions and their applications to functional equations.Diss. Math. 201 (1982), 1-28. MR 0687277
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_38-1997-4_5.pdf 195.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo