Previous |  Up |  Next

Article

Title: Finite spaces and the universal bundle of a group (English)
Author: Witbooi, Peter
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 38
Issue: 4
Year: 1997
Pages: 791-799
.
Category: math
.
Summary: We find sufficient conditions for a cotriad of which the objects are locally trivial fibrations, in order that the push-out be a locally trivial fibration. As an application, the universal $G$-bundle of a finite group $G$, and the classifying space is modeled by locally finite spaces. In particular, if $G$ is finite, then the universal $G$-bundle is the limit of an ascending chain of finite spaces. The bundle projection is a covering projection. (English)
Keyword: covering projection
Keyword: fibration
Keyword: finite space
Keyword: push-out
MSC: 54B15
MSC: 54B17
MSC: 55R35
MSC: 55R40
MSC: 55R65
idZBL: Zbl 0938.55024
idMR: MR1603722
.
Date available: 2009-01-08T18:37:58Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118973
.
Reference: [1] Alexandroff P.: Diskrete Räume.Matematiceskii Sbornik (N.S.) 2 (1937), 501-518. Zbl 0018.09105, MR 0004764
Reference: [2] Arhangel'skii A.V., Ponomarev V.I.: Fundamentals of General Topology, Problems and Exercises.D. Reidel Publishing Company, Dordrecht, Holland, 1984. MR 0785749
Reference: [3] Hardie K.A., Vermeulen J.J.C.: Homotopy theory of finite and locally finite T$_0$ spaces.Expo. Math. 11 (1993), 331-341. MR 1240364
Reference: [4] Khalimsky E.D.: Applications of ordered topological spaces in topology.Conference of Math. Departments of Povolsia, 1970.
Reference: [5] Massey W.S.: Algebraic Topology, an Introduction.Graduate Texts in Mathematics 70, Springer, 1977. Zbl 0457.55001, MR 0448331
Reference: [6] McCord M.C.: Singular homology groups and homotopy groups of finite topological spaces.Duke Math. J. 33 (1966), 465-474. Zbl 0142.21503, MR 0196744
Reference: [7] Milnor J.W.: Construction of universal bundles I, II.Ann. of Math. 63 (1956), 272-284 and 430-436. MR 0077122
Reference: [8] Stong R.E.: Finite topological spaces.Trans. Amer. Math. Soc. 123 (1966), 325-340. Zbl 0151.29502, MR 0195042
Reference: [9] Steenrod N.E.: The Topology of Fibre Bundles.Princeton University Press, Princeton, New Jersey, 1951. Zbl 0942.55002, MR 0039258
Reference: [10] Witbooi P.J.: Isomorphisms of fibrewise spaces.to appear in Festschrift for G.C.L. Brümmer on his sixtieth birthday, University of Cape Town, Rondebosch, South Africa. Zbl 0988.54012, MR 1722586
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_38-1997-4_14.pdf 220.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo