Previous |  Up |  Next

Article

Title: Remarks on continuous images of Radon-Nikodým compacta (English)
Author: Fabian, M.
Author: Heisler, M.
Author: Matoušková, E.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 39
Issue: 1
Year: 1998
Pages: 59-69
.
Category: math
.
Summary: A family of compact spaces containing continuous images of Radon-Nikod'ym compacta is introduced and studied. A family of Banach spaces containing subspaces of Asplund generated (i.e., GSG) spaces is introduced and studied. Further, for a continuous image of a Radon-Nikod'ym compact $K$ we prove: If $K$ is totally disconnected, then it is Radon-Nikod'ym compact. If $K$ is adequate, then it is even Eberlein compact. (English)
Keyword: Asplund generated space
Keyword: continuous image of Radon-Nikodym compact
Keyword: totally disconnected compact
Keyword: adequate compact
Keyword: Eberlein compact
MSC: 46B22
idZBL: Zbl 0937.46015
idMR: MR1622332
.
Date available: 2009-01-08T18:39:02Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118985
.
Reference: [A1] Argyros S.: Weakly Lindelöf determined Banach spaces not containing $\ell_1$.preprint.
Reference: [A2] Argyros S.: Private communication..
Reference: [BRW] Benyamini Y., Rudin M.E., Wage M.: Continuous images of weakly compact subsets of Banach spaces.Pacific J. Math. 70 (1977), 309-324. Zbl 0374.46011, MR 0625889
Reference: [DS] Dunford N., Schwartz J.T.: Linear Operators, Part I.Interscience Publ., New York, 1958. Zbl 0635.47001
Reference: [F] Fabian M.: Gâteaux Differentiability of Convex Functions and Topology - Weak Asplund Spaces.John Wiley & Sons, Interscience, New York, 1997. Zbl 0883.46011, MR 1461271
Reference: [Gr] Grothendieck A.: Produits tensoriels et espaces nucleaires.Memoirs Amer. Math. Soc., No. 16, 1955. MR 0075539
Reference: [H1] Heisler M.: Singlevaluedness of monotone operators on subspaces of GSG spaces.Comment. Math. Univ. Carolinae 37 (1996), 255-261. Zbl 0849.47025, MR 1399000
Reference: [H2] Heisler M.: Some aspects of differentiability and geometry on Banach spaces.PhD. Thesis, Prague, 1996.
Reference: [N1] Namioka I.: Eberlein and Radon-Nikodým compact spaces.Lecture Notes at University College, London, 1985. MR 0963600
Reference: [N2] Namioka I.: Radon-Nikodým compact spaces and fragmentability.Mathematika 34 (1987), 258-281. Zbl 0654.46017, MR 0933504
Reference: [NP] Namioka I., Phelps R.R.: Banach spaces which are Asplund spaces.Duke Math. J. 42 (1975), 735-750. Zbl 0332.46013, MR 0390721
Reference: [OSV] Orihuela J., Schachermayer W., Valdivia M.: Every Radon-Nikodým Corson compact is Eberlein compact.Studia Math. 98 (1991), 157-174. MR 1100920
Reference: [Ph] Phelps R.R.: Convex functions, monotone operators and differentiability.Lect. Notes Math., No. 1364, 2nd Edition, Springer Verlag, Berlin, 1993. Zbl 0921.46039, MR 1238715
Reference: [Ro] Rosenthal H.: The heredity problem for weakly compactly generated Banach spaces.Comp. Math. 28 (1974), 83-111. Zbl 0298.46013, MR 0417762
Reference: [St1] Stegall Ch.: The Radon-Nikodým property in conjugate Banach spaces II.Trans. Amer. Math. Soc. 264 (1981), 507-519. Zbl 0475.46016, MR 0603779
Reference: [St2] Stegall Ch.: More facts about conjugate Banach spaces with the Radon-Nikodým property II.Acta Univ. Carolinae - Math. et Phys. 32 (1991), 47-54. Zbl 0773.46008, MR 1146766
Reference: [T] Talagrand M.: Espaces de Banach faiblement $K$-analytiques.Annals of Math. 110 (1978), 407-438. MR 0554378
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_39-1998-1_7.pdf 244.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo