Previous |  Up |  Next

Article

Title: Some properties of short exact sequences of locally convex Riesz spaces (English)
Author: Radenović, Stojan
Author: Kadelburg, Zoran
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 39
Issue: 1
Year: 1998
Pages: 81-89
.
Category: math
.
Summary: We investigate the stability of some properties of locally convex Riesz spaces in connection with subspaces and quotients and also the corresponding three-space-problems. We show that in the richer structure there are more positive answers than in the category of locally convex spaces. (English)
Keyword: locally convex Riesz space
Keyword: short exact sequence
Keyword: three-space-problem
MSC: 46A04
MSC: 46A40
MSC: 46M99
idZBL: Zbl 0937.46003
idMR: MR1622978
.
Date available: 2009-01-08T18:39:11Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118987
.
Reference: [1] Bonet J., Dierolf S.: On the lifting of bounded sets in Fréchet spaces.Proc. Edinburgh Math. Soc. 36 (1993), 277-281. Zbl 0792.46001, MR 1221048
Reference: [2] Bonet J., Dierolf S., Fernandez C.: On the three-space-problem for distinguished Fréchet spaces.Bull. Soc. Roy. Sci. Liège 59 (1990), 301-306. Zbl 0713.46001, MR 1070413
Reference: [3] Diaz J.C., Dierolf S., Domanski P., Fernandez C.: On the three-space-problem for dual Fréchet spaces.Bull. Polish Acad. Sci. 40 (1992), 221-224. Zbl 0783.46002, MR 1401875
Reference: [4] Dierolf S.: On the three-space-problem and the lifting of bounded sets.Collect. Math. 44 (1993), 81-89. Zbl 0803.46001, MR 1280727
Reference: [5] Graev M.I.: Theory of topological groups.Uspekhi Mat. Nauk 5 (1950), 3-56. MR 0036245
Reference: [6] Grothendieck A.: Sur les espaces (F) et (DF).Summa Bras. Math. 3 (1954), 57-123. Zbl 0058.09803, MR 0075542
Reference: [7] Husain T., Khaleelulla S.M.: Barrelledness in Topological and Ordered Vector Spaces, Lecture Notes in Mathematics 692.Springer Berlin-Heidelberg-New York (1978). MR 0520916
Reference: [8] Kawai I.: Locally convex lattices.J. Math. Soc. Japan 9 (1957), 281-314. Zbl 0079.32203, MR 0095399
Reference: [9] Köthe G.: Topological Vector Spaces I, $2^{nd}$ ed..Springer Berlin-Heidelberg-New York (1983). MR 0248498
Reference: [10] Meise R., Vogt D.: Einführung in Funktionalanalysis.Vieweg Wiesbaden (1992). MR 1195130
Reference: [11] Peressini A.L.: On topologies in ordered vector spaces.Math. Annalen 144 (1961), 199-223. Zbl 0099.09103, MR 0138982
Reference: [12] Roelcke W., Dierolf S.: On the three-space-problem for topological vector spaces.Collect. Math. 32 (1981), 13-35. Zbl 0489.46002, MR 0643398
Reference: [13] Shaefer H.H.: Topological Vector Spaces.Springer Berlin-Heidelberg-New York (1970).
Reference: [14] Wong Y-C., Ng K-F.: Partially Ordered Topological Vector Spaces, Oxford Mathematical Monographs.Clarendon Press Oxford (1973). MR 0454581
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_39-1998-1_9.pdf 213.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo