| Title:
|
Inequalities for surface integrals of non-negative subharmonic functions (English) |
| Author:
|
Aldred, M. P. |
| Author:
|
Armitage, D. H. |
| Language:
|
English |
| Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
| ISSN:
|
0010-2628 (print) |
| ISSN:
|
1213-7243 (online) |
| Volume:
|
39 |
| Issue:
|
1 |
| Year:
|
1998 |
| Pages:
|
101-113 |
| . |
| Category:
|
math |
| . |
| Summary:
|
Let ${\Cal H}$ denote the class of positive harmonic functions on a bounded domain $\Omega$ in $\Bbb R^N$. Let $S$ be a sphere contained in $\overline{\Omega}$, and let $\sigma$ denote the $(N-1)$-dimensional measure. We give a condition on $\Omega$ which guarantees that there exists a constant $K$, depending only on $\Omega$ and $S$, such that $\int_Su\,d\sigma \le K\int_{\partial\Omega}u\,d\sigma$ for every $u\in {\Cal H}\cap C(\overline{\Omega})$. If this inequality holds for every such $u$, then it also holds for a large class of non-negative subharmonic functions. For certain types of domains explicit values for $K$ are given. In particular the classical value $K=2$ for convex domains is slightly improved. (English) |
| Keyword:
|
subharmonic |
| Keyword:
|
surface integral |
| MSC:
|
31B05 |
| idZBL:
|
Zbl 0938.31001 |
| idMR:
|
MR1622990 |
| . |
| Date available:
|
2009-01-08T18:39:24Z |
| Last updated:
|
2012-04-30 |
| Stable URL:
|
http://hdl.handle.net/10338.dmlcz/118990 |
| . |
| Reference:
|
[1] Dahlberg B.: On estimates of harmonic measure.Arch. Rational Mech. Anal. 65 (1977), 275-288. MR 0466593 |
| Reference:
|
[2] Gabriel R.M.: A note upon functions positive and subharmonic inside and on a closed convex curve.J. London Math. Soc. 21 (1946), 87-90. Zbl 0061.23203, MR 0019791 |
| Reference:
|
[3] Gardiner S.J.: Superharmonic extension from the boundary of a domain.Bull. London Math. Soc. 27 (1995), 347-352. Zbl 0835.31004, MR 1335285 |
| Reference:
|
[4] Hayman W.K.: Integrals of subharmonic functions along two curves.Indag. Mathem. N.S. 4 (1993), 447-459. Zbl 0794.31003, MR 1252989 |
| Reference:
|
[5] Helms L.L.: Introduction to Potential Theory.Wiley, New York, 1969. Zbl 0188.17203, MR 0261018 |
| Reference:
|
[6] Kuran Ü.: Harmonic majorizations in half-balls and half-spaces.Proc. London Math. Soc. (3) 21 (1970), 614-636. Zbl 0207.41603, MR 0315148 |
| Reference:
|
[7] Kuran Ü.: On NTA-conical domains.J. London Math. Soc. (2) 40 (1989), 467-475. Zbl 0726.31001, MR 1053615 |
| Reference:
|
[8] Reuter G.E.H.: An inequality for integrals of subharmonic functions over convex surfaces.J. London Math. Soc. 23 (1948), 56-58. Zbl 0032.28202, MR 0025642 |
| Reference:
|
[9] Widman K.-O.: Inequalities for the Green's function and boundary continuity of the gradient of solutions of elliptic differential equations.Math. Scand. 21 (1967), 17-37. MR 0239264 |
| . |