Previous |  Up |  Next

Article

Title: Inequalities for surface integrals of non-negative subharmonic functions (English)
Author: Aldred, M. P.
Author: Armitage, D. H.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 39
Issue: 1
Year: 1998
Pages: 101-113
.
Category: math
.
Summary: Let ${\Cal H}$ denote the class of positive harmonic functions on a bounded domain $\Omega$ in $\Bbb R^N$. Let $S$ be a sphere contained in $\overline{\Omega}$, and let $\sigma$ denote the $(N-1)$-dimensional measure. We give a condition on $\Omega$ which guarantees that there exists a constant $K$, depending only on $\Omega$ and $S$, such that $\int_Su\,d\sigma \le K\int_{\partial\Omega}u\,d\sigma$ for every $u\in {\Cal H}\cap C(\overline{\Omega})$. If this inequality holds for every such $u$, then it also holds for a large class of non-negative subharmonic functions. For certain types of domains explicit values for $K$ are given. In particular the classical value $K=2$ for convex domains is slightly improved. (English)
Keyword: subharmonic
Keyword: surface integral
MSC: 31B05
idZBL: Zbl 0938.31001
idMR: MR1622990
.
Date available: 2009-01-08T18:39:24Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118990
.
Reference: [1] Dahlberg B.: On estimates of harmonic measure.Arch. Rational Mech. Anal. 65 (1977), 275-288. MR 0466593
Reference: [2] Gabriel R.M.: A note upon functions positive and subharmonic inside and on a closed convex curve.J. London Math. Soc. 21 (1946), 87-90. Zbl 0061.23203, MR 0019791
Reference: [3] Gardiner S.J.: Superharmonic extension from the boundary of a domain.Bull. London Math. Soc. 27 (1995), 347-352. Zbl 0835.31004, MR 1335285
Reference: [4] Hayman W.K.: Integrals of subharmonic functions along two curves.Indag. Mathem. N.S. 4 (1993), 447-459. Zbl 0794.31003, MR 1252989
Reference: [5] Helms L.L.: Introduction to Potential Theory.Wiley, New York, 1969. Zbl 0188.17203, MR 0261018
Reference: [6] Kuran Ü.: Harmonic majorizations in half-balls and half-spaces.Proc. London Math. Soc. (3) 21 (1970), 614-636. Zbl 0207.41603, MR 0315148
Reference: [7] Kuran Ü.: On NTA-conical domains.J. London Math. Soc. (2) 40 (1989), 467-475. Zbl 0726.31001, MR 1053615
Reference: [8] Reuter G.E.H.: An inequality for integrals of subharmonic functions over convex surfaces.J. London Math. Soc. 23 (1948), 56-58. Zbl 0032.28202, MR 0025642
Reference: [9] Widman K.-O.: Inequalities for the Green's function and boundary continuity of the gradient of solutions of elliptic differential equations.Math. Scand. 21 (1967), 17-37. MR 0239264
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_39-1998-1_12.pdf 233.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo