Previous |  Up |  Next

Article

Title: Convergence in compacta and linear Lindelöfness (English)
Author: Arhangel'skii, A. V.
Author: Buzyakova, R. Z.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 39
Issue: 1
Year: 1998
Pages: 159-166
.
Category: math
.
Summary: Let $X$ be a compact Hausdorff space with a point $x$ such that $X\setminus \{ x\}$ is linearly Lindelöf. Is then $X$ first countable at $x$? What if this is true for every $x$ in $X$? We consider these and some related questions, and obtain partial answers; in particular, we prove that the answer to the second question is ``yes'' when $X$ is, in addition, $\omega $-monolithic. We also prove that if $X$ is compact, Hausdorff, and $X\setminus \{ x\}$ is strongly discretely Lindelöf, for every $x$ in $X$, then $X$ is first countable. An example of linearly Lindelöf hereditarily realcompact non-Lindelöf space is constructed. Some intriguing open problems are formulated. (English)
Keyword: point of complete accumulation
Keyword: linearly Lindelöf space
Keyword: local compactness
Keyword: first countability
Keyword: $\kappa $-accessible diagonal
MSC: 54A25
MSC: 54D30
MSC: 54E35
MSC: 54F99
idZBL: Zbl 0937.54022
idMR: MR1623006
.
Date available: 2009-01-08T18:39:45Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118994
.
Reference: [1] Alexandroff P.S., Urysohn P.S.: Memoire sur les espaces topologiques compacts.Nederl. Akad. Wetensch. Proc. Ser. A 14 (1929), 1-96.
Reference: [2] Arhangel'skii A.V.: On the cardinality of bicompacta satisfying the first axiom of countability.Soviet Math. Dokl. 10 (1969), 951-955.
Reference: [3] Arhangel'skii A.V.: Structure and classification of topological spaces and cardinal invariants.Russian Math. Surveys 33 (1978), 33-96. MR 0526012
Reference: [4] Arhangel'skii A.V.: A generic theorem in the theory of cardinal invariants of topological spaces.Comment. Math. Univ. Carolinae 36.2 (1995), 303-325. MR 1357532
Reference: [5] Arhangel'skii A.V., Buzyakova R.Z.: On linearly Lindelöf and strongly discretely Lindelöf spaces.to appear in Proc. AMS, 1998. Zbl 0930.54003, MR 1487356
Reference: [6] Engelking R.: General Topology.Sigma Series in Pure Mathematics, 6, Heldermann, Berlin, revised ed., 1989. Zbl 0684.54001, MR 1039321
Reference: [7] Haydon R.: On compactness in spaces of measures and measurecompact spaces.Proc. London Math. Soc. 29 (1974), 1-16. Zbl 0294.28005, MR 0361745
Reference: [8] Hodel R.E.: Cardinal Functions, 1.in: Handbook of Set-theoretic Topology, Editors: Kunen K. and J.E. Vaughan, Chapter 1, pp.1-62, North-Holland, Amsterdam, 1984. MR 0776620
Reference: [9] Hušek M.: Topological spaces without $\kappa $-accessible diagonal.Comment. Math. Univ. Carolinae 18 (1977), 777-788. MR 0515009
Reference: [10] Hušek M.: Convergence versus character in compact spaces.Coll. Math. Soc. J. Bolyai 23 (1980), 647-651. MR 0588812
Reference: [11] Juhász I.: Cardinal Functions.in M. Hušek and J. van Mill, Ed-rs: Recent Progress in General Topology, North-Holland, Amsterdam, 1993. MR 1229134
Reference: [12] Mischenko A.S.: Finally compact spaces.Soviet Math. Dokl. 145 (1962), 1199-1202. MR 0141070
Reference: [13] Rudin M.E.: Some Conjectures.in: J. van Mill and G.M. Reed, Ed-ors, Open Problems in Topology (1990), pp.184-193, North-Holland, Amsterdam. MR 1078646
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_39-1998-1_16.pdf 203.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo