Title:
|
Continuous functions between Isbell-Mrówka spaces (English) |
Author:
|
García-Ferreira, S. |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
39 |
Issue:
|
1 |
Year:
|
1998 |
Pages:
|
185-195 |
. |
Category:
|
math |
. |
Summary:
|
Let $\Psi(\Sigma)$ be the Isbell-Mr'owka space associated to the $MAD$-family $\Sigma$. We show that if $G$ is a countable subgroup of the group ${\bold S}(\omega)$ of all permutations of $\omega$, then there is a $MAD$-family $\Sigma$ such that every $f \in G$ can be extended to an autohomeomorphism of $\Psi(\Sigma)$. For a $MAD$-family $\Sigma$, we set $Inv(\Sigma) = \{ f \in {\bold S}(\omega) : f[A] \in \Sigma $ for all $A \in \Sigma \}$. It is shown that for every $f \in {\bold S}(\omega)$ there is a $MAD$-family $\Sigma$ such that $f \in Inv(\Sigma)$. As a consequence of this result we have that there is a $MAD$-family $\Sigma$ such that $n+A \in \Sigma$ whenever $A \in \Sigma$ and $n < \omega$, where $n+A = \{ n+a : a \in A \}$ for $n < \omega$. We also notice that there is no $MAD$-family $\Sigma$ such that $n \cdot A \in \Sigma$ whenever $A \in \Sigma$ and $1 \leq n < \omega$, where $n \cdot A = \{ n \cdot a : a \in A \}$ for $1 \leq n < \omega$. Several open questions are listed. (English) |
Keyword:
|
$MAD$-family |
Keyword:
|
Isbell-Mr'owka space |
MSC:
|
54A20 |
MSC:
|
54A35 |
MSC:
|
54C20 |
idZBL:
|
Zbl 0938.54004 |
idMR:
|
MR1623018 |
. |
Date available:
|
2009-01-08T18:39:58Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/118997 |
. |
Reference:
|
[BV] Balcar B., Vojtáš P.: Almost disjoint refinement of families of subsets of $N$.Proc. Amer. Math. Soc. 79 (1980), 465-470. MR 0567994 |
Reference:
|
[Ba] Baskirov A.I.: On maximal almost disjoint systems and Franklin bicompacta.Soviet. Math. Dokl. 19 (1978), 864-868. MR 0504217 |
Reference:
|
[CN] Comfort W.W., Negrepontis S.: The Theory of Ultrafilters.Grudlehren der Mathematischen Wissenschaften, Vol. 211, Springer-Verlag, 1974. Zbl 0298.02004, MR 0396267 |
Reference:
|
[GJ] Gillman L., Jerison M.: Rings of Continuous Functions.Graduate Texts in Mathematics, Vol. 43, Springer-Verlag, 1976. Zbl 0327.46040, MR 0407579 |
Reference:
|
[Ka] Katětov M.: A theorem on mappings.Comment. Math. Univ. Carolinae 8 (1967), 431-433. MR 0229228 |
Reference:
|
[L] Levy R.: Almost $P$-spaces.Can. J. Math. 29 (1977), 284-288. Zbl 0342.54032, MR 0464203 |
Reference:
|
[Mr] Mrówka S.: On completely regular spaces.Fund. Math. 41 (1954), 105-106. MR 0063650 |
. |