Previous |  Up |  Next

Article

Title: Continuous functions between Isbell-Mrówka spaces (English)
Author: García-Ferreira, S.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 39
Issue: 1
Year: 1998
Pages: 185-195
.
Category: math
.
Summary: Let $\Psi(\Sigma)$ be the Isbell-Mr'owka space associated to the $MAD$-family $\Sigma$. We show that if $G$ is a countable subgroup of the group ${\bold S}(\omega)$ of all permutations of $\omega$, then there is a $MAD$-family $\Sigma$ such that every $f \in G$ can be extended to an autohomeomorphism of $\Psi(\Sigma)$. For a $MAD$-family $\Sigma$, we set $Inv(\Sigma) = \{ f \in {\bold S}(\omega) : f[A] \in \Sigma $ for all $A \in \Sigma \}$. It is shown that for every $f \in {\bold S}(\omega)$ there is a $MAD$-family $\Sigma$ such that $f \in Inv(\Sigma)$. As a consequence of this result we have that there is a $MAD$-family $\Sigma$ such that $n+A \in \Sigma$ whenever $A \in \Sigma$ and $n < \omega$, where $n+A = \{ n+a : a \in A \}$ for $n < \omega$. We also notice that there is no $MAD$-family $\Sigma$ such that $n \cdot A \in \Sigma$ whenever $A \in \Sigma$ and $1 \leq n < \omega$, where $n \cdot A = \{ n \cdot a : a \in A \}$ for $1 \leq n < \omega$. Several open questions are listed. (English)
Keyword: $MAD$-family
Keyword: Isbell-Mr'owka space
MSC: 54A20
MSC: 54A35
MSC: 54C20
idZBL: Zbl 0938.54004
idMR: MR1623018
.
Date available: 2009-01-08T18:39:58Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118997
.
Reference: [BV] Balcar B., Vojtáš P.: Almost disjoint refinement of families of subsets of $N$.Proc. Amer. Math. Soc. 79 (1980), 465-470. MR 0567994
Reference: [Ba] Baskirov A.I.: On maximal almost disjoint systems and Franklin bicompacta.Soviet. Math. Dokl. 19 (1978), 864-868. MR 0504217
Reference: [CN] Comfort W.W., Negrepontis S.: The Theory of Ultrafilters.Grudlehren der Mathematischen Wissenschaften, Vol. 211, Springer-Verlag, 1974. Zbl 0298.02004, MR 0396267
Reference: [GJ] Gillman L., Jerison M.: Rings of Continuous Functions.Graduate Texts in Mathematics, Vol. 43, Springer-Verlag, 1976. Zbl 0327.46040, MR 0407579
Reference: [Ka] Katětov M.: A theorem on mappings.Comment. Math. Univ. Carolinae 8 (1967), 431-433. MR 0229228
Reference: [L] Levy R.: Almost $P$-spaces.Can. J. Math. 29 (1977), 284-288. Zbl 0342.54032, MR 0464203
Reference: [Mr] Mrówka S.: On completely regular spaces.Fund. Math. 41 (1954), 105-106. MR 0063650
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_39-1998-1_19.pdf 241.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo