Previous |  Up |  Next

Article

Title: Order-like structure of monotonically normal spaces (English)
Author: Williams, Scott W.
Author: Zhou, Haoxuan
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 39
Issue: 1
Year: 1998
Pages: 207-217
.
Category: math
.
Summary: For a compact monotonically normal space X we prove: \, (1) \, $X$ has a dense set of points with a well-ordered neighborhood base (and so $X$ is co-absolute with a compact orderable space); \, (2) \, each point of $X$ has a well-ordered neighborhood $\pi $-base (answering a question of Arhangel'skii); \, (3) \, $X$ is hereditarily paracompact iff $X$ has countable tightness. In the process we introduce weak-tightness, a notion key to the results above and yielding some cardinal function results on monotonically normal spaces. (English)
Keyword: monotonically normal
Keyword: compactness
Keyword: linear ordered spaces
MSC: 54D15
MSC: 54D30
MSC: 54F05
idZBL: Zbl 0937.54012
idMR: MR1623026
.
Date available: 2009-01-08T18:40:07Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118999
.
Reference: [Ar1] Arhangel'skii A.V.: Structure and classification of topological spaces and cardinal invariants.Russian Math. Surv. 33 (1977), 33-95. MR 0526012
Reference: [Ar2] Arhangel'skii A.V.: Some properties of radial spaces.Math. Zametki 27 (1980), 95-104. MR 0562480
Reference: [BR] Balogh Z., Rudin M.E.: Monotone Normality.Topology and Appl. 47 (1992), 115-127. Zbl 0769.54022, MR 1193194
Reference: [Bo1] Borges C.J.R.: On stratifiable spaces.Pacific J. Math. 17 (1966), 1-16. Zbl 0175.19802, MR 0188982
Reference: [Bo2] Borges C.J.R.: Direct sums of stratifiable spaces.Fundamenta Math. 100 (1978), 95-99. Zbl 0389.54018, MR 0505891
Reference: [En] Engelking R.: General Topology.Polish Scientific Publishers, 1977. Zbl 0684.54001, MR 0500780
Reference: [Gr] Gruenhage G.: Generalized metric spaces.Handbook of Set-theoretic Topology, North Holland, 1984, pp.423-502. Zbl 0794.54034, MR 0776629
Reference: [HLZ] Heath R.W., Lutzer D.J., Zenor P.L.: Monotonically normal spaces.Trans. Amer. Math. Soc. 155 (1973), 481-494. Zbl 0269.54009, MR 0372826
Reference: [Ho] Hodel R.: Cardinal Functions I.Handbook of set-theoretic Topology, North Holland, 1984, pp.1-61. Zbl 0559.54003, MR 0776620
Reference: [Ju] Juhasz I.: Cardinal Functions in Topology.Math. Centre Tracts 34, 1971. Zbl 0479.54001, MR 0340021
Reference: [Ni] Nikiel J.: Some problems on continuous images of compact ordered spaces.Quest. & And. in Gen. Top. 4 (1986), 117-128. MR 0917893
Reference: [NP] Nyikos P.J., Purisch S.: Monotone normality and paracompactness in scattered spaces.Annals on the New York Acad. Sci. 552, 1989, pp.124-137. Zbl 0887.54019, MR 1020780
Reference: [Os] Ostacewski A.: Monotone normality and $G_\delta $-diagonals in the class of inductively generated spaces.Coll. Math. Soc. Janos Bolyai, Topology 23 (1978), 905-930. MR 0588837
Reference: [Ru1] Rudin M.E.: Dowker spaces.Handbook of Set-theoretic Topology, North Holland, 1984, pp.761-780. Zbl 0566.54009, MR 0776636
Reference: [Ru2] Rudin M.E.: Monotone normality and compactness.to appear in Topology and Appl. volume of Ehime Conference Proceedings, 1995. Zbl 0874.54004, MR 1425938
Reference: [Ru3] Rudin M.E.: Compact monotonically normal spaces.invited lecture, 8th Prague Topological Symposium, August, 1996. Zbl 0983.54021
Reference: [St] Stephenson R.M., Jr.: Initially $k$-compact and related spaces.Handbook of Set-theoretic Topology, North Holland, 1984, pp.603-602. MR 0776632
Reference: [UH] HASH(0x976e968): The University of Houston Problem Book, 6/30/90..
Reference: [Wi] Williams S.W.: Trees, Gleason spaces, and co-absolutes of $\beta N$-$N$.Trans. Amer. Math. Soc. 271 (1982), 83-100. MR 0648079
Reference: [WZ] Williams S.W., Zhou H.: Strong versions of normality.Proceedings of the New York Conference on Topology and its Applications. Zbl 0797.54011
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_39-1998-1_21.pdf 232.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo