Title:
|
$\omega$H-sets and cardinal invariants (English) |
Author:
|
Fedeli, Alessandro |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
39 |
Issue:
|
2 |
Year:
|
1998 |
Pages:
|
367-370 |
. |
Category:
|
math |
. |
Summary:
|
A subset $A$ of a Hausdorff space $X$ is called an $\omega$H-set in $X$ if for every open family $\Cal U$ in $X$ such that $A \subset \bigcup \Cal U$ there exists a countable subfamily $\Cal V$ of $\Cal U$ such that $A \subset \bigcup \{ \overline{V} : V \in \Cal V \}$. In this paper we introduce a new cardinal function $t_{s\theta}$ and show that $|A| \leq 2^{t_{s\theta}(X)\psi_{c}(X)}$ for every $\omega$H-set $A$ of a Hausdorff space $X$. (English) |
Keyword:
|
cardinal function |
Keyword:
|
$\omega$H-set |
MSC:
|
54A25 |
MSC:
|
54D20 |
idZBL:
|
Zbl 0937.54004 |
idMR:
|
MR1651975 |
. |
Date available:
|
2009-01-08T18:41:08Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119013 |
. |
Reference:
|
[1] Bella A.: A couple of questions concerning cardinal invariants.Q & A in General Topology 14.2 (1996), pages ???. Zbl 0856.54002, MR 1403339 |
Reference:
|
[2] Bella A., Cammaroto F.: On the cardinality of Urysohn spaces.Canad. Math. Bull. 31 (1988), 153-158. Zbl 0646.54005, MR 0942065 |
Reference:
|
[3] Bella A., Yaschenko I.V.: Embeddings into first countable spaces with H-closed like properties.preprint. Zbl 0939.54003, MR 1601642 |
Reference:
|
[4] Bella A., Porter J.: Local cardinal functions of H-closed spaces.Comment. Math. Univ. Carolinae 37.2 (1996), 371-374. Zbl 0854.54003, MR 1399007 |
Reference:
|
[5] Dow A.: An introduction to applications of elementary submodels in topology.Topology Proceedings 13 (1988), 17-72. MR 1031969 |
Reference:
|
[6] Dow A.: More set-theory for topologists.Topology Appl. 64 (1995), 243-300. Zbl 0837.54001, MR 1342520 |
Reference:
|
[7] Dow A., Porter J.: Cardinalities of H-closed spaces.Topology Proceedings 7 (1982), 27-50. Zbl 0569.54004, MR 0696618 |
Reference:
|
[8] Engelking R.: General Topology.Sigma Series in Pure Mathematics 6, Heldermann Verlag, Berlin (1989). Zbl 0684.54001, MR 1039321 |
Reference:
|
[9] Fedeli A., Watson S.: Elementary submodels and cardinal functions.Topology Proceedings 20 (1995), 91-110. Zbl 0894.54008, MR 1429175 |
Reference:
|
[10] Hodel R.E.: Cardinal functions I.1-61 Handbook of Set-theoretic Topology (Kunen K. and Vaughan J.E., eds.), Elsevier Science Publishers B.V., North Holland (1984). Zbl 0559.54003, MR 0776620 |
Reference:
|
[11] Juhàsz I.: Cardinal functions in topology - ten years later.Mathematical Centre Tracts 123, Amsterdam (1980). MR 0576927 |
Reference:
|
[12] Kočinac Lj.: On the cardinality of Urysohn and H-closed spaces.105-111 Proc. of the Mathematical Conference in Priština (1994). MR 1466279 |
Reference:
|
[13] Veličhko N.V.: H-closed topological spaces.Amer. Math. Soc. Transl. 78 (ser. 2) (1969), 103-118. |
Reference:
|
[14] Watson S.: The construction of topological spaces: Planks and Resolutions.675-757 Recent Progress in General Topology (Hušek M. and Van Mill J., eds.), Elsevier Science Publishers, B.V., North Holland (1992). Zbl 0803.54001, MR 1229141 |
Reference:
|
[15] Watson S.: The Lindelöf number of a power; an introduction to the use of elementary submodels in general topology.Topology Appl. 58 (1994), 25-34. Zbl 0836.54004, MR 1280708 |
. |