Previous |  Up |  Next

Article

Title: $\omega$H-sets and cardinal invariants (English)
Author: Fedeli, Alessandro
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 39
Issue: 2
Year: 1998
Pages: 367-370
.
Category: math
.
Summary: A subset $A$ of a Hausdorff space $X$ is called an $\omega$H-set in $X$ if for every open family $\Cal U$ in $X$ such that $A \subset \bigcup \Cal U$ there exists a countable subfamily $\Cal V$ of $\Cal U$ such that $A \subset \bigcup \{ \overline{V} : V \in \Cal V \}$. In this paper we introduce a new cardinal function $t_{s\theta}$ and show that $|A| \leq 2^{t_{s\theta}(X)\psi_{c}(X)}$ for every $\omega$H-set $A$ of a Hausdorff space $X$. (English)
Keyword: cardinal function
Keyword: $\omega$H-set
MSC: 54A25
MSC: 54D20
idZBL: Zbl 0937.54004
idMR: MR1651975
.
Date available: 2009-01-08T18:41:08Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119013
.
Reference: [1] Bella A.: A couple of questions concerning cardinal invariants.Q & A in General Topology 14.2 (1996), pages ???. Zbl 0856.54002, MR 1403339
Reference: [2] Bella A., Cammaroto F.: On the cardinality of Urysohn spaces.Canad. Math. Bull. 31 (1988), 153-158. Zbl 0646.54005, MR 0942065
Reference: [3] Bella A., Yaschenko I.V.: Embeddings into first countable spaces with H-closed like properties.preprint. Zbl 0939.54003, MR 1601642
Reference: [4] Bella A., Porter J.: Local cardinal functions of H-closed spaces.Comment. Math. Univ. Carolinae 37.2 (1996), 371-374. Zbl 0854.54003, MR 1399007
Reference: [5] Dow A.: An introduction to applications of elementary submodels in topology.Topology Proceedings 13 (1988), 17-72. MR 1031969
Reference: [6] Dow A.: More set-theory for topologists.Topology Appl. 64 (1995), 243-300. Zbl 0837.54001, MR 1342520
Reference: [7] Dow A., Porter J.: Cardinalities of H-closed spaces.Topology Proceedings 7 (1982), 27-50. Zbl 0569.54004, MR 0696618
Reference: [8] Engelking R.: General Topology.Sigma Series in Pure Mathematics 6, Heldermann Verlag, Berlin (1989). Zbl 0684.54001, MR 1039321
Reference: [9] Fedeli A., Watson S.: Elementary submodels and cardinal functions.Topology Proceedings 20 (1995), 91-110. Zbl 0894.54008, MR 1429175
Reference: [10] Hodel R.E.: Cardinal functions I.1-61 Handbook of Set-theoretic Topology (Kunen K. and Vaughan J.E., eds.), Elsevier Science Publishers B.V., North Holland (1984). Zbl 0559.54003, MR 0776620
Reference: [11] Juhàsz I.: Cardinal functions in topology - ten years later.Mathematical Centre Tracts 123, Amsterdam (1980). MR 0576927
Reference: [12] Kočinac Lj.: On the cardinality of Urysohn and H-closed spaces.105-111 Proc. of the Mathematical Conference in Priština (1994). MR 1466279
Reference: [13] Veličhko N.V.: H-closed topological spaces.Amer. Math. Soc. Transl. 78 (ser. 2) (1969), 103-118.
Reference: [14] Watson S.: The construction of topological spaces: Planks and Resolutions.675-757 Recent Progress in General Topology (Hušek M. and Van Mill J., eds.), Elsevier Science Publishers, B.V., North Holland (1992). Zbl 0803.54001, MR 1229141
Reference: [15] Watson S.: The Lindelöf number of a power; an introduction to the use of elementary submodels in general topology.Topology Appl. 58 (1994), 25-34. Zbl 0836.54004, MR 1280708
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_39-1998-2_13.pdf 178.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo