Previous |  Up |  Next

Article

Title: Subgroups of $\Bbb R$-factorizable groups (English)
Author: Hernández, Constancio
Author: Tkačenko, Michael
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 39
Issue: 2
Year: 1998
Pages: 371-378
.
Category: math
.
Summary: The properties of $\Bbb R$-factorizable groups and their subgroups are studied. We show that a locally compact group $G$ is $\Bbb R$-factorizable if and only if $G$ is $\sigma$-compact. It is proved that a subgroup $H$ of an $\Bbb R$-factorizable group $G$ is $\Bbb R$-factorizable if and only if $H$ is $z$-embedded in $G$. Therefore, a subgroup of an $\Bbb R$-factorizable group need not be $\Bbb R$-factorizable, and we present a method for constructing non-$\Bbb R$-factorizable dense subgroups of a special class of $\Bbb R$-factorizable groups. Finally, we construct a closed $G_{\delta}$-subgroup of an $\Bbb R$-fac\-torizable group which is not $\Bbb R$-factorizable. (English)
Keyword: $\Bbb R$-factorizable group
Keyword: $z$-embedded set
Keyword: $\aleph_0$-bounded group
Keyword: $P$-group
Keyword: Lindelöf group
MSC: 22A05
MSC: 22D05
MSC: 54C50
MSC: 54H11
idZBL: Zbl 1100.54026
idMR: MR1651979
.
Date available: 2009-01-08T18:41:12Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119014
.
Reference: [1] Comfort W.W.: Compactness like properties for generalized weak topological sums.Pacific J. Math. 60 (1975), 31-37. Zbl 0307.54016, MR 0431088
Reference: [2] Comfort W.W., Ross K.A.: Pseudocompactness and uniform continuity in topological groups.Pacific J. Math. 16 (1966), 483-496. Zbl 0214.28502, MR 0207886
Reference: [3] Guran I.I.: On topological groups close to being Lindelöf.Soviet Math. Dokl. 23 (1981), 173-175. Zbl 0478.22002
Reference: [4] Hernández S., Sanchiz M., Tkačenko M.: Bounded sets in spaces and topological groups.submitted for publication.
Reference: [5] Engelking R.: General Topology.Heldermann Verlag, 1989. Zbl 0684.54001, MR 1039321
Reference: [6] Pontryagin L.S.: Continuous Groups.Princeton Univ. Press, Princeton, 1939. Zbl 0659.22001
Reference: [7] Tkačenko M.G.: Subgroups, quotient groups and products of $\Bbb R$-factorizable groups.Topology Proceedings 16 (1991), 201-231. MR 1206464
Reference: [8] Tkačenko M.G.: Factorization theorems for topological groups and their applications.Topology Appl. 38 (1991), 21-37. MR 1093863
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_39-1998-2_14.pdf 224.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo