Previous |  Up |  Next

Article

Title: The $\Cal L_\nu^{(\rho )}$-transformation on McBride's spaces of generalized functions (English)
Author: Cruz-Báez, D. I.
Author: Rodríguez, J.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 39
Issue: 3
Year: 1998
Pages: 445-452
.
Category: math
.
Summary: An integral transform denoted by ${\Cal L}_{\nu }^{(\rho )}$ that generalizes the well-known Laplace and Meijer transformations, is studied in this paper on certain spaces of generalized functions introduced by A.C. McBride by employing the adjoint method. (English)
Keyword: Krätzel integral transformation
Keyword: $L_p$-spaces
Keyword: distributions
MSC: 44A10
MSC: 44A15
MSC: 46F12
idZBL: Zbl 0971.44002
idMR: MR1666833
.
Date available: 2009-01-08T18:45:10Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119023
.
Reference: [1] Barrios J.A., Betancor J.J.: On a generalization of Laplace transform due to E. Krätzel.J. Inst. Math. & Comp. Sci. (Math. Ser.) 3 (4) (1990), 273-291. Zbl 0844.44002, MR 1104376
Reference: [2] Barrios J.A., Betancor J.J.: A Real Inversion Formula for the Krätzel's Generalized Laplace Transform.Extracta Mathematicae 6 (2) (1991), 55-57.
Reference: [3] Erdelyi A., Magnus W., Oberhettinger F., Tricomi F.: Tables of Integral Transforms, Vol. II.McGraw-Hill, New York, 1954. Zbl 0058.34103, MR 0065685
Reference: [4] Kilbas A.A., Bonilla B., Rivero M., Rodríguez J., Trujillo J.: Bessel type function and Bessel type integral transform on spaces ${\Cal F}_{p,\mu }$ and ${\Cal F}_{p,\mu }^{^{\prime }}$.to appear.
Reference: [5] Krätzel E.: Eine verallgemeinerung der Laplace- und Meijer-transformation.Wiss. Z. Univ. Jena Math. Naturw. Reihe 5 (1965), 369-381. MR 0231142
Reference: [6] Krätzel E.: Die faltung der L-transformation.Wiss. Z. Univ. Jena Math. Naturw. Reihe 5 (1965), 383-390. MR 0231143
Reference: [7] Krätzel E.: Integral transformations of Bessel-type.Proceeding of International Conference on Generalized Functions and Operational Calculus, Varna, 1975, pp.148-155. MR 0547343
Reference: [8] Krätzel E., Menzer H.: Verallgemeinerte Hankel-Funktionen.Pub. Math. Debrecen 18, fasc. 1-4 (1973), 139-148. MR 0310309
Reference: [9] McBride A.C.: Fractional Calculus and Integral Transforms of Generalized Functions.Res. Notes Math., 31, Pitman Press, San Francisco, London, Melbourne, 1979. Zbl 0423.46029, MR 0550881
Reference: [10] McBride A.C.: Fractional powers of a class ordinary differential operators.Proc. London Math. Soc., Ser. 3 45 (1982), 3 519-546. MR 0675420
Reference: [11] Rao G.L.N., Debnath L.: A generalized Meijer transformation.Int. J. Math. & Math. Sci. 8:2 (1985), 359-365. Zbl 0597.46036, MR 0797835
Reference: [12] Zemanian A.H.: A distributional $K$ transformation.Siam J. Appl. Math. 14 6 (1966), 1350-1365.
Reference: [13] Zemanian A.H: Generalized Integral Transformation.Interscience Publisher, New York, 1968. MR 0423007
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_39-1998-3_2.pdf 200.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo