Previous |  Up |  Next

Article

Title: On the cardinality of Hausdorff spaces (English)
Author: Fedeli, Alessandro
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 39
Issue: 3
Year: 1998
Pages: 581-585
.
Category: math
.
Summary: The aim of this paper is to show, using the reflection principle, three new cardinal inequalities. These results improve some well-known bounds on the cardinality of Hausdorff spaces. (English)
Keyword: cardinal inequality
Keyword: Hausdorff space
MSC: 54A25
idZBL: Zbl 0913.54004
idMR: MR1666814
.
Date available: 2009-01-08T18:46:33Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119035
.
Reference: [1] Dow A.: An introduction to applications of elementary submodels to topology.Topology Proc. 13 (1988), 17-72. Zbl 0696.03024, MR 1031969
Reference: [2] Dow A.: More set-theory for topologists.Topology Appl. 64 (1995), 243-300. Zbl 0837.54001, MR 1342520
Reference: [3] Engelking R.: General Topology. Revised and completed edition.Sigma Series in Pure Mathematics 6, Heldermann Verlag, Berlin (1989). MR 1039321
Reference: [4] Fedeli A., Watson S.: Elementary submodels and cardinal functions.Topology Proc. 20 (1995), 91-110. Zbl 0894.54008, MR 1429175
Reference: [5] Hodel R.E.: Cardinal Functions I.Handbook of Set-theoretic Topology (Kunen K. and Vaughan J.E., eds.), Elsevier Science Publishers, B.V., North Holland (1984), 1-61. Zbl 0559.54003, MR 0776620
Reference: [6] Hodel R.E.: Combinatorial set theory and cardinal functions inequalities.Proc. Amer. Math. Soc. 111 (1991), 567-575. MR 1039531
Reference: [7] Juhàsz I.: Cardinal Functions in Topology - ten years later.Mathematical Centre Tracts 123, Amsterdam (1980). MR 0576927
Reference: [8] Sun S.H.: Two new topological cardinal inequalities.Proc. Amer. Math. Soc. 104 (1988), 313-316. Zbl 0669.54002, MR 0958090
Reference: [9] Watson S.: The construction of topological spaces: Planks and Resolutions.Recent Progress in General Topology (Hušek M. and Van Mill J., eds.), Elsevier Science Publishers, B.V., North Holland (1992), 675-757. Zbl 0803.54001, MR 1229141
Reference: [10] Watson S.: The Lindelöf number of a power; an introduction to the use of elementary submodels in general topology.Topology Appl. 58 (1994), 25-34. Zbl 0836.54004, MR 1280708
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_39-1998-3_14.pdf 180.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo