Previous |  Up |  Next

Article

Title: Differentiability for minimizers of anisotropic integrals (English)
Author: Cavaliere, P.
Author: D'Ottavio, A.
Author: Leonetti, F.
Author: Longobardi, M.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 39
Issue: 4
Year: 1998
Pages: 685-696
.
Category: math
.
Summary: We consider a function $u:\Omega \to \Bbb R^N$, $\Omega \subset \Bbb R^n$, minimizing the integral $\int_\Omega(|D_1 u|^2 + \dots +|D_{n-1}u|^2 +|D_n u|^p)\,dx$, $2(n+1)/(n+3)\leq p<2$, where $D_i u = \partial u/ \partial x_i$, or some more general functional with the same behaviour; we prove the existence of second weak derivatives $D(D_1 u), \dots , D(D_{n-1} u) \in L^2$ and $D(D_n u) \in L^p$. (English)
Keyword: regularity
Keyword: minimizers
Keyword: integral functionals
Keyword: anisotropic growth
MSC: 35J50
MSC: 35J60
MSC: 49N60
idZBL: Zbl 1060.49507
idMR: MR1715458
.
Date available: 2009-01-08T18:47:33Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119044
.
Reference: [AF] Acerbi E., Fusco N.: Regularity for minimizers of non-quadratic functionals: the case $1< p< 2$.J. Math. Anal. Appl. 140 (1989), 115-135. Zbl 0686.49004, MR 0997847
Reference: [AF1] Acerbi E., Fusco N.: Partial regularity under anisotropic $(p,q)$ growth conditions.J. Differential Equations 107 (1994), 46-67. Zbl 0807.49010, MR 1260848
Reference: [BL] Bhattacharya T., Leonetti F.: Some remarks on the regularity of minimizers of integrals with anisotropic growth.Comment. Math. Univ. Carolinae 34 (1993), 597-611. Zbl 0794.49034, MR 1263791
Reference: [BL1] Bhattacharya T., Leonetti F.: On improved regularity of weak solutions of some degenerate, anisotropic elliptic systems.Ann. Mat. Pura Appl. 170 (1996), 241-255. Zbl 0876.35030, MR 1441621
Reference: [C] Campanato S.: Sistemi ellittici in forma divergenza. Regolarità all'interno..Quaderni Scuola Normale Superiore, Pisa, 1980. Zbl 0453.35026, MR 0668196
Reference: [D] D'Ottavio A.: A remark on a paper by Bhattacharya and Leonetti.Comment. Math. Univ. Carolinae 36 (1995), 489-491. MR 1364489
Reference: [FS] Fusco N., Sbordone C.: Local boundedness of minimizers in a limit case.Manuscripta Math. 69 (1990), 19-25. Zbl 0722.49012, MR 1070292
Reference: [FS1] Fusco N., Sbordone C.: Some remarks on the regularity of minima of anisotropic integrals.Comm. Partial Differential Equations 18 (1993), 153-167. Zbl 0795.49025, MR 1211728
Reference: [G] Giaquinta M.: Multiple integrals in the calculus of variations and nonlinear elliptic systems.Annals of Mathematics Studies 105, Princeton University Press, Princeton 1983. Zbl 0516.49003, MR 0717034
Reference: [G1] Giaquinta M.: Growth conditions and regularity, a counterexample.Manuscripta Math. 59 (1987), 245-248. Zbl 0638.49005, MR 0905200
Reference: [L] Leonetti F.: Higher integrability for minimizers of integral functionals with nonstandard growth.J. Differential Equations 112 (1994), 308-324. Zbl 0813.49030, MR 1293473
Reference: [M] Marcellini P.: Un example de solution discontinue d'un probleme variationnel dans ce cas scalaire.preprint, Istituto Matematico ``U. Dini'', Universita' di Firenze, 1987/88, n. 11.
Reference: [M1] Marcellini P.: Regularity of minimizers of integrals of the calculus of variations with nonstandard growth conditions.Arch. Rational Mech. Anal. 105 (1989), 267-284. MR 0969900
Reference: [N] Naumann J.: Interior integral estimates on weak solutions of certain degenerate elliptic systems.Ann. Mat. Pura Appl. 156 (1990), 113-125. Zbl 0732.35032, MR 1080212
Reference: [Ni] Nirenberg L.: Remarks on strongly elliptic differential equations.Comm. Pure Appl. Math. 8 (1955), 649-675. MR 0075415
Reference: [T] Troisi M.: Teoremi di inclusione per spazi di Sobolev non isotropi.Ricerche di Mat. 18 (1969), 3-24. Zbl 0182.16802, MR 0415302
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_39-1998-4_5.pdf 221.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo