Previous |  Up |  Next

Article

Title: Gehring theory for time-discrete hyperbolic differential equations (English)
Author: Hoshino, K.
Author: Kikuchi, N.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 39
Issue: 4
Year: 1998
Pages: 697-707
.
Category: math
.
Summary: This paper is concerned with extending Gehring theory to be applicable to Rothe's approximate solutions to hyperbolic differential equations. (English)
Keyword: Gehring theory
Keyword: Rothe's approximation
Keyword: hyperbolic differential equations
MSC: 26D15
MSC: 35L20
MSC: 35L90
MSC: 39A10
MSC: 49J40
idZBL: Zbl 1060.35527
idMR: MR1715459
.
Date available: 2009-01-08T18:47:43Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119045
.
Reference: [1] Calderón A.P., Zygmund A.: On the existence of certain singular integrals.Acta Math. 88 (1952), 85-139. MR 0052553
Reference: [2] Gehring F.W.: The $L^p$-integrability of the partial derivatives of a quasi conformal mapping.Acta Math. 130 (1973), 265-277. Zbl 0258.30022, MR 0402038
Reference: [3] Giaquinta M.: Multiple integrals in the calculus of variations and non linear elliptic systems.Vorlesungsreihe des Sonderforschungsbereiches, Universität Bonn, 1981. Zbl 0498.49001
Reference: [4] Giaquinta M.: Introduction to regularity theory for nonlinear elliptic systems.Lecture in Mathematics, Birkhäuser, 1993. Zbl 0786.35001, MR 1239172
Reference: [5] Giaquinta M., Giusti E.: Partial regularity for the solutions to nonlinear parabolic systems.Ann. Mat. Pura Appl. 47 (1973), 253-266. Zbl 0276.35062, MR 0338568
Reference: [6] Giaquinta M., Giusti E.: On the regularity of the minima of variational integrals.Acta Math. 148 (1982), 31-46. Zbl 0494.49031, MR 0666107
Reference: [7] Giaquinta M., Modica G.: Regularity results for some classes of higher order non linear elliptic systems.J. Reine Angew. Math. 311/312 (1979), 145-169. Zbl 0409.35015, MR 0549962
Reference: [8] Giaquinta M., Struwe M.: On the partial regularity of weak solutions of non-linear parabolic systems.Math. Z. 142 (1982), 437-451.
Reference: [9] Haga J., Kikuchi N.: On the existence of the harmonic variational flow subject to the two-sided conditions.Zap. Nauch. Semi. POMI. 243 (1997), 324-337. MR 1629761
Reference: [10] Haga J., Kikuchi N.: On the higher integrability of gradients of the solutions to difference partial differential systems of elliptic-parabolic type.preprint.
Reference: [11] Hoshino K.: On a method constructing solutions to hyperbolic partial differential equations.Nonlinear Studies 4 (1997), 133-142. Zbl 0909.35083, MR 1485185
Reference: [12] Hoshino K.: On a construction of weak solutions to semilinear dissipative hyperbolic systems with the higher integrable gradients.to appear in Nonlinear Analysis. Zbl 0941.35044, MR 1710157
Reference: [13] Hoshino K., Kikuchi N.: On a construction of weak solutions to linear hyperbolic partial differential systems with the higher integrable gradients.Zap. Nauch. Semi. POMI. 233 (1996), 30-52. MR 1699114
Reference: [14] Kikuchi N.: An approach to the construction of Morse flows for variational functionals.in: Nematics-Mathematical and Physical Aspects, ed. by J.-M. Coron, J.-M. Ghidaglia and F. Helein, NATO Adv. Sci. Inst. Ser.C: Math. Phys. Sci. 332, Kluwer Acad. Publ., Dordrecht-Boston-London, 1991, pp.195-198. Zbl 0850.76043, MR 1178095
Reference: [15] Kikuchi N.: A construction method of Morse flows to variational functionals.Nonlinear World 1 (1994), 131-147. MR 1297075
Reference: [16] Rothe E.: Wärmeleitungsgleichung mit nichtkostanten Koeffizienten.Math. Ann. 104 (1931), 340-362. MR 1512671
Reference: [17] Stein E.M.: Singular integrals and differentiability properties of functions.Princeton University Press, Princeton, 1970. Zbl 0281.44003, MR 0290095
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_39-1998-4_6.pdf 230.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo