[1] Banaś J.: 
Compactness conditions in the geometric theory of Banach spaces. Nonlinear Anal. 16 (1990), 669-682. 
MR 1097324 
[2] Banaś J., Fraczek K.: 
Conditions involving compactness in geometry of Banach spaces. Nonlinear Anal. 20 (1993), 1217-1230. 
MR 1219238 
[3] Banaś J., Goebel K.: 
Measures of Noncompactness in Banach Spaces. Marcel Dekker New York (1980). 
MR 0591679 
[4] van Dulst D.: 
Reflexive and Superreflexive Banach Spaces. Mathematisch Centrum Amsterdam (1978). 
MR 0513590 | 
Zbl 0412.46006 
[5] García Falset J.: 
Stability and fixed points for nonexpansive mappings. Houston J. Math 20 (1994), 495-505. 
MR 1287990 
[6] García Falset J.: The fixed point property in Banach spaces with NUS-property. preprint.
[7] Goebel K., Sȩkowski T.: 
The modulus of noncompact convexity. Ann. Univ. Mariae Curie-Skłodowska, Sect. A 38 (1984), 41-48. 
MR 0856623 
[8] Huff R.: 
Banach spaces which are nearly uniformly convex. Rocky Mountain J. Math. 10 (1980), 743-749. 
MR 0595102 | 
Zbl 0505.46011 
[12] Johnson W.B., Zippin M.: 
On subspaces of quotients of ${(\sum G_n)}_{l_p}$ and ${(\sum G_n)}_{c_0}$. Israel J. Math. 13 (1972), 311-316. 
MR 0331023 
[13] Lindenstrauss J., Tzafriri L.: 
Classical Banach Spaces I. Sequence Spaces. Springer-Verlag New York (1977). 
MR 0500056 | 
Zbl 0362.46013 
[14] Prus S.: 
Nearly uniformly smooth Banach spaces. Boll. U.M.I. (7) 3-B (1989), 507-521. 
MR 1010520 
[16] Rosenthal H.P.: 
A characterization of Banach spaces containing $l_1$. Proc. Nat. Acad. Sci. (USA) 71 (1974), 2411-2413. 
MR 0358307 | 
Zbl 0297.46013 
[17] Sȩkowski T., Stachura A.: 
Noncompact smoothness and noncompact convexity. Atti. Sem. Mat. Fis. Univ. Modena 36 (1988), 329-338. 
MR 0976047 
[18] Zippin M.: 
A remark on bases and reflexivity in Banach spaces. Israel J. Math. 6 (1968), 74-79. 
MR 0236677 | 
Zbl 0157.20101