Title:
|
On infinite dimensional uniform smoothness of Banach spaces (English) |
Author:
|
Prus, Stanisław |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
40 |
Issue:
|
1 |
Year:
|
1999 |
Pages:
|
97-105 |
. |
Category:
|
math |
. |
Summary:
|
An infinite dimensional counterpart of uniform smoothness is studied. It does not imply reflexivity, but we prove that it gives some $l_p$-type estimates for finite dimensional decompositions, weak Banach-Saks property and the weak fixed point property. (English) |
Keyword:
|
Banach space |
Keyword:
|
nearly uniform smoothness |
Keyword:
|
finite dimensional decomposition |
Keyword:
|
Banach-Saks property |
Keyword:
|
fixed point property |
MSC:
|
46B20 |
MSC:
|
47H10 |
idZBL:
|
Zbl 1060.46504 |
idMR:
|
MR1715204 |
. |
Date available:
|
2009-01-08T18:49:56Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119065 |
. |
Reference:
|
[1] Banaś J.: Compactness conditions in the geometric theory of Banach spaces.Nonlinear Anal. 16 (1990), 669-682. MR 1097324 |
Reference:
|
[2] Banaś J., Fraczek K.: Conditions involving compactness in geometry of Banach spaces.Nonlinear Anal. 20 (1993), 1217-1230. MR 1219238 |
Reference:
|
[3] Banaś J., Goebel K.: Measures of Noncompactness in Banach Spaces.Marcel Dekker New York (1980). MR 0591679 |
Reference:
|
[4] van Dulst D.: Reflexive and Superreflexive Banach Spaces.Mathematisch Centrum Amsterdam (1978). Zbl 0412.46006, MR 0513590 |
Reference:
|
[5] García Falset J.: Stability and fixed points for nonexpansive mappings.Houston J. Math 20 (1994), 495-505. MR 1287990 |
Reference:
|
[6] García Falset J.: The fixed point property in Banach spaces with NUS-property.preprint. |
Reference:
|
[7] Goebel K., Sȩkowski T.: The modulus of noncompact convexity.Ann. Univ. Mariae Curie-Skłodowska, Sect. A 38 (1984), 41-48. MR 0856623 |
Reference:
|
[8] Huff R.: Banach spaces which are nearly uniformly convex.Rocky Mountain J. Math. 10 (1980), 743-749. Zbl 0505.46011, MR 0595102 |
Reference:
|
[9] James R.C.: Bases and reflexivity of Banach spaces.Ann. of Math. 52 (1950), 518-527. Zbl 0039.12202, MR 0039915 |
Reference:
|
[10] James R.C.: Uniformly non-square Banach spaces.Ann. of Math. 80 (1964), 542-550. Zbl 0132.08902, MR 0173932 |
Reference:
|
[11] James R.C.: Super-reflexive spaces with bases.Pacific J. Math. 41 (1972), 409-419. Zbl 0235.46031, MR 0308752 |
Reference:
|
[12] Johnson W.B., Zippin M.: On subspaces of quotients of ${(\sum G_n)}_{l_p}$ and ${(\sum G_n)}_{c_0}$.Israel J. Math. 13 (1972), 311-316. MR 0331023 |
Reference:
|
[13] Lindenstrauss J., Tzafriri L.: Classical Banach Spaces I. Sequence Spaces.Springer-Verlag New York (1977). Zbl 0362.46013, MR 0500056 |
Reference:
|
[14] Prus S.: Nearly uniformly smooth Banach spaces.Boll. U.M.I. (7) 3-B (1989), 507-521. MR 1010520 |
Reference:
|
[15] Prus S.: Banach spaces and operators which are nearly uniformly convex.to appear. Zbl 0886.46017, MR 1444685 |
Reference:
|
[16] Rosenthal H.P.: A characterization of Banach spaces containing $l_1$.Proc. Nat. Acad. Sci. (USA) 71 (1974), 2411-2413. Zbl 0297.46013, MR 0358307 |
Reference:
|
[17] Sȩkowski T., Stachura A.: Noncompact smoothness and noncompact convexity.Atti. Sem. Mat. Fis. Univ. Modena 36 (1988), 329-338. MR 0976047 |
Reference:
|
[18] Zippin M.: A remark on bases and reflexivity in Banach spaces.Israel J. Math. 6 (1968), 74-79. Zbl 0157.20101, MR 0236677 |
. |