Previous |  Up |  Next

Article

Title: On infinite dimensional uniform smoothness of Banach spaces (English)
Author: Prus, Stanisław
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 40
Issue: 1
Year: 1999
Pages: 97-105
.
Category: math
.
Summary: An infinite dimensional counterpart of uniform smoothness is studied. It does not imply reflexivity, but we prove that it gives some $l_p$-type estimates for finite dimensional decompositions, weak Banach-Saks property and the weak fixed point property. (English)
Keyword: Banach space
Keyword: nearly uniform smoothness
Keyword: finite dimensional decomposition
Keyword: Banach-Saks property
Keyword: fixed point property
MSC: 46B20
MSC: 47H10
idZBL: Zbl 1060.46504
idMR: MR1715204
.
Date available: 2009-01-08T18:49:56Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119065
.
Reference: [1] Banaś J.: Compactness conditions in the geometric theory of Banach spaces.Nonlinear Anal. 16 (1990), 669-682. MR 1097324
Reference: [2] Banaś J., Fraczek K.: Conditions involving compactness in geometry of Banach spaces.Nonlinear Anal. 20 (1993), 1217-1230. MR 1219238
Reference: [3] Banaś J., Goebel K.: Measures of Noncompactness in Banach Spaces.Marcel Dekker New York (1980). MR 0591679
Reference: [4] van Dulst D.: Reflexive and Superreflexive Banach Spaces.Mathematisch Centrum Amsterdam (1978). Zbl 0412.46006, MR 0513590
Reference: [5] García Falset J.: Stability and fixed points for nonexpansive mappings.Houston J. Math 20 (1994), 495-505. MR 1287990
Reference: [6] García Falset J.: The fixed point property in Banach spaces with NUS-property.preprint.
Reference: [7] Goebel K., Sȩkowski T.: The modulus of noncompact convexity.Ann. Univ. Mariae Curie-Skłodowska, Sect. A 38 (1984), 41-48. MR 0856623
Reference: [8] Huff R.: Banach spaces which are nearly uniformly convex.Rocky Mountain J. Math. 10 (1980), 743-749. Zbl 0505.46011, MR 0595102
Reference: [9] James R.C.: Bases and reflexivity of Banach spaces.Ann. of Math. 52 (1950), 518-527. Zbl 0039.12202, MR 0039915
Reference: [10] James R.C.: Uniformly non-square Banach spaces.Ann. of Math. 80 (1964), 542-550. Zbl 0132.08902, MR 0173932
Reference: [11] James R.C.: Super-reflexive spaces with bases.Pacific J. Math. 41 (1972), 409-419. Zbl 0235.46031, MR 0308752
Reference: [12] Johnson W.B., Zippin M.: On subspaces of quotients of ${(\sum G_n)}_{l_p}$ and ${(\sum G_n)}_{c_0}$.Israel J. Math. 13 (1972), 311-316. MR 0331023
Reference: [13] Lindenstrauss J., Tzafriri L.: Classical Banach Spaces I. Sequence Spaces.Springer-Verlag New York (1977). Zbl 0362.46013, MR 0500056
Reference: [14] Prus S.: Nearly uniformly smooth Banach spaces.Boll. U.M.I. (7) 3-B (1989), 507-521. MR 1010520
Reference: [15] Prus S.: Banach spaces and operators which are nearly uniformly convex.to appear. Zbl 0886.46017, MR 1444685
Reference: [16] Rosenthal H.P.: A characterization of Banach spaces containing $l_1$.Proc. Nat. Acad. Sci. (USA) 71 (1974), 2411-2413. Zbl 0297.46013, MR 0358307
Reference: [17] Sȩkowski T., Stachura A.: Noncompact smoothness and noncompact convexity.Atti. Sem. Mat. Fis. Univ. Modena 36 (1988), 329-338. MR 0976047
Reference: [18] Zippin M.: A remark on bases and reflexivity in Banach spaces.Israel J. Math. 6 (1968), 74-79. Zbl 0157.20101, MR 0236677
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_40-1999-1_7.pdf 214.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo