Previous |  Up |  Next

Article

Title: Differentially trivial left Noetherian rings (English)
Author: Artemovych, O. D.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 40
Issue: 2
Year: 1999
Pages: 201-208
.
Category: math
.
Summary: We characterize left Noetherian rings which have only trivial derivations. (English)
Keyword: differentially trivial ring
Keyword: Noetherian ring
MSC: 12H05
MSC: 13N05
MSC: 16A12
MSC: 16A72
MSC: 16D70
MSC: 16U70
MSC: 16W25
idZBL: Zbl 0983.16017
idMR: MR1732640
.
Date available: 2009-01-08T18:51:07Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119075
.
Reference: [1] Komarnytskyi M.Ya., Artemovych O.D.: On the ideally differential rings (in Ukrainian).Herald of Lviv University (1983), 21 35-40. MR 1030517
Reference: [2] Artemovych O.D.: Ideally differential and perfect rigid rings (in Ukrainian).DAN UkrSSR (1985), 4 3-5. MR 0796364
Reference: [3] Nowicki A.: Differential rings in which any ideal is differential.Acta Universitatis Carolinae (1985), 26 3 43-49. Zbl 0596.13011, MR 0830268
Reference: [4] McConnel J.C., Robson J.C.: Noncommutative Noetherian Rings.Chictester e.a.: J.Wiley and Sons (1987). MR 0934572
Reference: [5] Bourbaki N.: Algebre commutative.Hermann, Paris (1961). Zbl 0119.03603
Reference: [6] Artemovych O.D.: Differentially trivial and rigid rings of finite rank.preprint. Zbl 0931.16018, MR 1684503
Reference: [7] Zariski O., Samuel P.: Commutative Algebra.I D. van Nostrand C., Princeton (1960). Zbl 0121.27801, MR 0120249
Reference: [8] Atiyah M.F., Macdonald I.G.: Introduction to Commutative Algebra.Addison-Wesley P.C., Reading (1969). Zbl 0175.03601, MR 0242802
Reference: [9] Lambek J.: Lectures on Rings and Modules.Blaisdell Publ. Com., Waltham, Toronto, London (1966). Zbl 0143.26403, MR 0206032
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_40-1999-2_1.pdf 196.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo