| Title:
|
Differentially trivial left Noetherian rings (English) |
| Author:
|
Artemovych, O. D. |
| Language:
|
English |
| Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
| ISSN:
|
0010-2628 (print) |
| ISSN:
|
1213-7243 (online) |
| Volume:
|
40 |
| Issue:
|
2 |
| Year:
|
1999 |
| Pages:
|
201-208 |
| . |
| Category:
|
math |
| . |
| Summary:
|
We characterize left Noetherian rings which have only trivial derivations. (English) |
| Keyword:
|
differentially trivial ring |
| Keyword:
|
Noetherian ring |
| MSC:
|
12H05 |
| MSC:
|
13N05 |
| MSC:
|
16A12 |
| MSC:
|
16A72 |
| MSC:
|
16D70 |
| MSC:
|
16U70 |
| MSC:
|
16W25 |
| idZBL:
|
Zbl 0983.16017 |
| idMR:
|
MR1732640 |
| . |
| Date available:
|
2009-01-08T18:51:07Z |
| Last updated:
|
2012-04-30 |
| Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119075 |
| . |
| Reference:
|
[1] Komarnytskyi M.Ya., Artemovych O.D.: On the ideally differential rings (in Ukrainian).Herald of Lviv University (1983), 21 35-40. MR 1030517 |
| Reference:
|
[2] Artemovych O.D.: Ideally differential and perfect rigid rings (in Ukrainian).DAN UkrSSR (1985), 4 3-5. MR 0796364 |
| Reference:
|
[3] Nowicki A.: Differential rings in which any ideal is differential.Acta Universitatis Carolinae (1985), 26 3 43-49. Zbl 0596.13011, MR 0830268 |
| Reference:
|
[4] McConnel J.C., Robson J.C.: Noncommutative Noetherian Rings.Chictester e.a.: J.Wiley and Sons (1987). MR 0934572 |
| Reference:
|
[5] Bourbaki N.: Algebre commutative.Hermann, Paris (1961). Zbl 0119.03603 |
| Reference:
|
[6] Artemovych O.D.: Differentially trivial and rigid rings of finite rank.preprint. Zbl 0931.16018, MR 1684503 |
| Reference:
|
[7] Zariski O., Samuel P.: Commutative Algebra.I D. van Nostrand C., Princeton (1960). Zbl 0121.27801, MR 0120249 |
| Reference:
|
[8] Atiyah M.F., Macdonald I.G.: Introduction to Commutative Algebra.Addison-Wesley P.C., Reading (1969). Zbl 0175.03601, MR 0242802 |
| Reference:
|
[9] Lambek J.: Lectures on Rings and Modules.Blaisdell Publ. Com., Waltham, Toronto, London (1966). Zbl 0143.26403, MR 0206032 |
| . |