Previous |  Up |  Next

Article

Title: Evolution inclusions in non separable Banach spaces (English)
Author: De Blasi, F. S.
Author: Pianigiani, G.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 40
Issue: 2
Year: 1999
Pages: 227-250
.
Category: math
.
Summary: We study a Cauchy problem for non-convex valued evolution inclusions in non separable Banach spaces under Filippov type assumptions. We establish existence and relaxation theorems. (English)
Keyword: evolution inclusions
Keyword: mild solutions
Keyword: Lusin measurable multifunctions
Keyword: Banach spaces
Keyword: relaxation
MSC: 34A60
MSC: 34G20
MSC: 34G25
idZBL: Zbl 0987.34063
idMR: MR1732644
.
Date available: 2009-01-08T18:51:32Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119079
.
Reference: [1] Bressan A., Colombo G.: Extensions and selections of maps with decomposable values.Studia Math. 90 (1988), 69-86. Zbl 0677.54013, MR 0947921
Reference: [2] Castaing C., Valadier M.: Convex analysis and measurable multifunctions.Lecture Notes in Mathematics, vol. 580, Springer-Verlag, Berlin, 1977. Zbl 0346.46038, MR 0467310
Reference: [3] De Blasi F.S., Pianigiani G.: Hausdorff measurable multifunctions.J. Math. Anal. Appl. 228 (1998), 1-15. Zbl 0921.54013, MR 1659936
Reference: [4] Filippov A.F.: Classical solutions of differential equations with multivalued right hand side.SIAM J. Control Optim. 5 (1967), 609-621. MR 0220995
Reference: [5] Frankowska H.: A priori estimates for operational differential inclusions.J. Differential Equations 84 (1990), 100-128. Zbl 0715.49010, MR 1042661
Reference: [6] Hermes H.: The generalized differential equation $x'\in R(t,x)$.Advances in Math. 4 (1970), 149-169. MR 0252722
Reference: [7] Hille E., Phillips R.S.: Functional analysis and semi-groups.Amer. Math. Soc. Colloq. Publ., Vol. 31, Providence R.I., 1957. Zbl 0392.46001, MR 0089373
Reference: [8] Himmelberg C.J.: Measurable relations.Fund. Math. 87 (1975), 53-72. Zbl 0296.28003, MR 0367142
Reference: [9] Himmelberg C.J., Van Vleck F.S.: Lipschitzian generalized differential equations.Rend. Sem. Mat. Univ. Padova 48 (1973), 159-169. Zbl 0289.49009, MR 0340692
Reference: [10] Hu S., Lakshmikantham V., Papageorgiou N.S.: On the solutions set of nonlinear differential inclusions.Dynamic Systems and Appl. 1 (1992), 71-82. MR 1154650
Reference: [11] Klein E., Thompson A.C.: Theory of correspondences.J. Wiley, New York, 1984. Zbl 0556.28012, MR 0752692
Reference: [12] Kuratowski K., Ryll-Nardzewski C.: A general theorem on selectors.Bull. Acad. Pol. Sci. Sér. Soc. Math. Astron. Phys. 13 (1965), 397-403. Zbl 0152.21403, MR 0188994
Reference: [13] Papageorgiou N.S.: Convexity of the orientor field and the solution set of a class of evolution inclusions.Math. Slovaca 43 (1993), 593-615. Zbl 0799.34018, MR 1273713
Reference: [14] Papageorgiou N.S.: A continuous version of the relaxation theorem for nonlinear evolution inclusions.Houston J. Math. 20 (1994), 685-704. Zbl 0864.34057, MR 1305938
Reference: [15] Pazy A.: Semigroups of linear operators and applications to partial differential equations.Springer-Verlag, Berlin, 1983. Zbl 0516.47023, MR 0710486
Reference: [16] Tolstonogov A.A.: On the properties of integral solutions of differential inclusions with $m$-accretive operators.Soviet Math. Notes 49 (1991), 119-131. MR 1135523
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_40-1999-2_5.pdf 307.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo