Previous |  Up |  Next

Article

Title: Kuratowski convergence on compacta and Hausdorff metric convergence on compacta (English)
Author: Brandi, P.
Author: Ceppitelli, R.
Author: Holá, Ľ.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 40
Issue: 2
Year: 1999
Pages: 309-318
.
Category: math
.
Summary: This paper completes and improves results of [10]. Let $(X,d_{_X})$, $(Y,d_{_Y})$ be two metric spaces and $G$ be the space of all $Y$-valued continuous functions whose domain is a closed subset of $X$. If $X$ is a locally compact metric space, then the Kuratowski convergence $\tau_{_K}$ and the Kuratowski convergence on compacta $\tau_{_K}^c$ coincide on $G$. Thus if $X$ and $Y$ are boundedly compact metric spaces we have the equivalence of the convergence in the Attouch-Wets topology $\tau_{_{AW}}$ (generated by the box metric of $d_{_X}$ and $d_{_Y}$) and $\tau_{_K}^c$ convergence on $G$, which improves the main result of [10]. In the second part of paper we extend the definition of Hausdorff metric convergence on compacta for general metric spaces $X$ and $Y$ and we show that if $X$ is locally compact metric space, then also $\tau$-convergence and Hausdorff metric convergence on compacta coincide in $G$. (English)
Keyword: Kuratowski convergence
Keyword: Attouch-Wets convergence
Keyword: $\tau$-convergence
Keyword: Kuratowski convergence on compacta and Hausdorff metric convergence on compacta
MSC: 54A20
MSC: 54B20
MSC: 54C35
idZBL: Zbl 0976.54010
idMR: MR1732651
.
Date available: 2009-01-08T18:52:20Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119086
.
Reference: [1] Beer G.: Topologies on Closed and Closed Convex Sets.Kluwer, 1993. Zbl 0792.54008, MR 1269778
Reference: [2] Brandi P., Ceppitelli R.: Esistenza, unicitá e dipendenza continua per equazioni differenziali in una struttura ereditaria.Atti Sem. Mat. Fis. Univ. Modena 35 (1987), 357-363. MR 0937975
Reference: [3] Brandi P., Ceppitelli R.: Existence, uniqueness and continuous dependence for hereditary differential equations.J. Diff. Equations 81 (1989), 317-339. Zbl 0709.34062, MR 1016086
Reference: [4] Brandi P., Ceppitelli R.: A new graph topology. Connections with compact open topology.Appl. Analysis 53 (1994), 185-196. MR 1379407
Reference: [5] Brandi P., Ceppitelli R.: A new graph topology intended for functional differential equations.Atti Sem. Mat. Univ. Modena 54 (1996), 43-52. Zbl 0890.54010, MR 1405228
Reference: [6] Brandi P., Ceppitelli R.: A hypertopology intended for functional differential equations.Appl. Analysis 67 (1997), 73-88. Zbl 0886.54009, MR 1609874
Reference: [7] Brandi P., Ceppitelli R., Holá L'.: Topological properties of a new graph topology.J. Convex Anal. 5 (1998), 2 1-12. MR 1713949
Reference: [8] Ceppitelli R., Faina L.: Differential equations with hereditary structure induced by a Volterra type property.preprint. Zbl 0988.34049, MR 1821774
Reference: [9] Holá L'.: The Attouch-Wets topology and a characterization of normable linear spaces.Bull. Austral. Math. Soc. 44 (1991), 11-18. MR 1120389
Reference: [10] Piccione P., Sampalmieri R.: Attouch-Wets convergence and Kuratowski convergence on compact sets.Comment. Math. Univ. Carolinae 36 (1995), 551-562. Zbl 0844.54010, MR 1364496
Reference: [11] Sampalmieri R.: Kuratowski convergence on compact sets.Atti Sem. Mat. Fis. Univ. Modena 39 (1992), 381-390. Zbl 0770.54016, MR 1200296
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_40-1999-2_12.pdf 240.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo