Title:
|
Kuratowski convergence on compacta and Hausdorff metric convergence on compacta (English) |
Author:
|
Brandi, P. |
Author:
|
Ceppitelli, R. |
Author:
|
Holá, Ľ. |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
40 |
Issue:
|
2 |
Year:
|
1999 |
Pages:
|
309-318 |
. |
Category:
|
math |
. |
Summary:
|
This paper completes and improves results of [10]. Let $(X,d_{_X})$, $(Y,d_{_Y})$ be two metric spaces and $G$ be the space of all $Y$-valued continuous functions whose domain is a closed subset of $X$. If $X$ is a locally compact metric space, then the Kuratowski convergence $\tau_{_K}$ and the Kuratowski convergence on compacta $\tau_{_K}^c$ coincide on $G$. Thus if $X$ and $Y$ are boundedly compact metric spaces we have the equivalence of the convergence in the Attouch-Wets topology $\tau_{_{AW}}$ (generated by the box metric of $d_{_X}$ and $d_{_Y}$) and $\tau_{_K}^c$ convergence on $G$, which improves the main result of [10]. In the second part of paper we extend the definition of Hausdorff metric convergence on compacta for general metric spaces $X$ and $Y$ and we show that if $X$ is locally compact metric space, then also $\tau$-convergence and Hausdorff metric convergence on compacta coincide in $G$. (English) |
Keyword:
|
Kuratowski convergence |
Keyword:
|
Attouch-Wets convergence |
Keyword:
|
$\tau$-convergence |
Keyword:
|
Kuratowski convergence on compacta and Hausdorff metric convergence on compacta |
MSC:
|
54A20 |
MSC:
|
54B20 |
MSC:
|
54C35 |
idZBL:
|
Zbl 0976.54010 |
idMR:
|
MR1732651 |
. |
Date available:
|
2009-01-08T18:52:20Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119086 |
. |
Reference:
|
[1] Beer G.: Topologies on Closed and Closed Convex Sets.Kluwer, 1993. Zbl 0792.54008, MR 1269778 |
Reference:
|
[2] Brandi P., Ceppitelli R.: Esistenza, unicitá e dipendenza continua per equazioni differenziali in una struttura ereditaria.Atti Sem. Mat. Fis. Univ. Modena 35 (1987), 357-363. MR 0937975 |
Reference:
|
[3] Brandi P., Ceppitelli R.: Existence, uniqueness and continuous dependence for hereditary differential equations.J. Diff. Equations 81 (1989), 317-339. Zbl 0709.34062, MR 1016086 |
Reference:
|
[4] Brandi P., Ceppitelli R.: A new graph topology. Connections with compact open topology.Appl. Analysis 53 (1994), 185-196. MR 1379407 |
Reference:
|
[5] Brandi P., Ceppitelli R.: A new graph topology intended for functional differential equations.Atti Sem. Mat. Univ. Modena 54 (1996), 43-52. Zbl 0890.54010, MR 1405228 |
Reference:
|
[6] Brandi P., Ceppitelli R.: A hypertopology intended for functional differential equations.Appl. Analysis 67 (1997), 73-88. Zbl 0886.54009, MR 1609874 |
Reference:
|
[7] Brandi P., Ceppitelli R., Holá L'.: Topological properties of a new graph topology.J. Convex Anal. 5 (1998), 2 1-12. MR 1713949 |
Reference:
|
[8] Ceppitelli R., Faina L.: Differential equations with hereditary structure induced by a Volterra type property.preprint. Zbl 0988.34049, MR 1821774 |
Reference:
|
[9] Holá L'.: The Attouch-Wets topology and a characterization of normable linear spaces.Bull. Austral. Math. Soc. 44 (1991), 11-18. MR 1120389 |
Reference:
|
[10] Piccione P., Sampalmieri R.: Attouch-Wets convergence and Kuratowski convergence on compact sets.Comment. Math. Univ. Carolinae 36 (1995), 551-562. Zbl 0844.54010, MR 1364496 |
Reference:
|
[11] Sampalmieri R.: Kuratowski convergence on compact sets.Atti Sem. Mat. Fis. Univ. Modena 39 (1992), 381-390. Zbl 0770.54016, MR 1200296 |
. |