Previous |  Up |  Next

Article

Title: On the extensibility of closed filters in T$_1$ spaces and the existence of well orderable filter bases (English)
Author: Keremedis, Kyriakos
Author: Tachtsis, Eleftherios
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 40
Issue: 2
Year: 1999
Pages: 343-353
.
Category: math
.
Summary: We show that the statement CCFC = ``{\it the character of a maximal free filter $F$ of closed sets in a $T_1$ space $(X,T)$ is not countable\/}'' is equivalent to the {\it Countable Multiple Choice Axiom\/} CMC and, the axiom of choice AC is equivalent to the statement CFE$_0$ = ``{\it closed filters in a $T_0$ space $(X,T)$ extend to maximal closed filters\/}''. We also show that AC is equivalent to each of the assertions: \newline ``{\it every closed filter $\Cal {F}$ in a $T_1$ space $(X,T)$ extends to a maximal closed filter with a well orderable filter base\/}'', \newline ``{\it for every set $A\neq \emptyset $, every filter $\Cal {F} \subseteq \Cal {P}(A)$ extends to an ultrafilter with a well orderable filter base\/}'' and \newline ``{\it every open filter $\Cal {F}$ in a $T_1$ space $(X,T)$ extends to a maximal open filter with a well orderable filter base\/}''. (English)
Keyword: closed filters
Keyword: bases for filters
Keyword: characters of filters
Keyword: ultrafilters
MSC: 03E25
MSC: 54A20
MSC: 54A35
MSC: 54D10
idZBL: Zbl 0977.03025
idMR: MR1732656
.
Date available: 2009-01-08T18:52:56Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119091
.
Reference: [1] Blass A.: A model without ultrafilters.Bull. Acad. Sci. Polon., Ser. Sci. Math. Astr. Phys. 25 (1977), 329-331. Zbl 0365.02054, MR 0476510
Reference: [2] Blass A.: Prime Ideals yield almost maximal Ideals.Fund. Math. 127 (1986), 56-66. MR 0883153
Reference: [3] Brunner N.: $\sigma $-kompakte raume.Manuscripta Math. 38 (1982), 375-379. MR 0667922
Reference: [4] Howard P., Keremedis K., Rubin H., Rubin J.E.: Versions of normality and some weak forms of the axiom of choice.to appear in Math. Logic Quarterly 44 (1998). Zbl 0911.03027, MR 1645498
Reference: [5] Howard P., Rubin J.E.: Consequences of the Axiom of Choice.AMS, Mathematical Surveys and Monographs 59, 1998. Zbl 0947.03001, MR 1637107
Reference: [6] Herrlich H., Steprāns J.: Maximal filters, continuity, and choice principles.Quaestiones Math. 20 (1997). MR 1625478
Reference: [7] Jech T.J.: The Axiom of Choice.North-Holland, Amsterdam, 1973. Zbl 0259.02052, MR 0396271
Reference: [8] Keremedis K.: Disasters in topology without the axiom of choice.preprint, 1996. Zbl 1027.03040, MR 1867681
Reference: [9] Levy A.: Axioms of multiple choice.Fund. Math. 50 (1962), 475-483. Zbl 0134.24805, MR 0139528
Reference: [10] Munkres J.R.: Topology : A first course.Prentice-Hall, Englewood Cliffs NJ, 1975. Zbl 0306.54001, MR 0464128
Reference: [11] Rubin H., Rubin J.E.: Equivalents of the Axiom of Choice, II.North-Holland, 1985. MR 0798475
Reference: [12] Herrlich H.: Compactness and the Axiom of Choice.Applied Categorical Structures 4 (1996), 1-14. Zbl 0881.54027, MR 1393958
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_40-1999-2_17.pdf 231.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo