Title:
|
On the extensibility of closed filters in T$_1$ spaces and the existence of well orderable filter bases (English) |
Author:
|
Keremedis, Kyriakos |
Author:
|
Tachtsis, Eleftherios |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
40 |
Issue:
|
2 |
Year:
|
1999 |
Pages:
|
343-353 |
. |
Category:
|
math |
. |
Summary:
|
We show that the statement CCFC = ``{\it the character of a maximal free filter $F$ of closed sets in a $T_1$ space $(X,T)$ is not countable\/}'' is equivalent to the {\it Countable Multiple Choice Axiom\/} CMC and, the axiom of choice AC is equivalent to the statement CFE$_0$ = ``{\it closed filters in a $T_0$ space $(X,T)$ extend to maximal closed filters\/}''. We also show that AC is equivalent to each of the assertions: \newline ``{\it every closed filter $\Cal {F}$ in a $T_1$ space $(X,T)$ extends to a maximal closed filter with a well orderable filter base\/}'', \newline ``{\it for every set $A\neq \emptyset $, every filter $\Cal {F} \subseteq \Cal {P}(A)$ extends to an ultrafilter with a well orderable filter base\/}'' and \newline ``{\it every open filter $\Cal {F}$ in a $T_1$ space $(X,T)$ extends to a maximal open filter with a well orderable filter base\/}''. (English) |
Keyword:
|
closed filters |
Keyword:
|
bases for filters |
Keyword:
|
characters of filters |
Keyword:
|
ultrafilters |
MSC:
|
03E25 |
MSC:
|
54A20 |
MSC:
|
54A35 |
MSC:
|
54D10 |
idZBL:
|
Zbl 0977.03025 |
idMR:
|
MR1732656 |
. |
Date available:
|
2009-01-08T18:52:56Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119091 |
. |
Reference:
|
[1] Blass A.: A model without ultrafilters.Bull. Acad. Sci. Polon., Ser. Sci. Math. Astr. Phys. 25 (1977), 329-331. Zbl 0365.02054, MR 0476510 |
Reference:
|
[2] Blass A.: Prime Ideals yield almost maximal Ideals.Fund. Math. 127 (1986), 56-66. MR 0883153 |
Reference:
|
[3] Brunner N.: $\sigma $-kompakte raume.Manuscripta Math. 38 (1982), 375-379. MR 0667922 |
Reference:
|
[4] Howard P., Keremedis K., Rubin H., Rubin J.E.: Versions of normality and some weak forms of the axiom of choice.to appear in Math. Logic Quarterly 44 (1998). Zbl 0911.03027, MR 1645498 |
Reference:
|
[5] Howard P., Rubin J.E.: Consequences of the Axiom of Choice.AMS, Mathematical Surveys and Monographs 59, 1998. Zbl 0947.03001, MR 1637107 |
Reference:
|
[6] Herrlich H., Steprāns J.: Maximal filters, continuity, and choice principles.Quaestiones Math. 20 (1997). MR 1625478 |
Reference:
|
[7] Jech T.J.: The Axiom of Choice.North-Holland, Amsterdam, 1973. Zbl 0259.02052, MR 0396271 |
Reference:
|
[8] Keremedis K.: Disasters in topology without the axiom of choice.preprint, 1996. Zbl 1027.03040, MR 1867681 |
Reference:
|
[9] Levy A.: Axioms of multiple choice.Fund. Math. 50 (1962), 475-483. Zbl 0134.24805, MR 0139528 |
Reference:
|
[10] Munkres J.R.: Topology : A first course.Prentice-Hall, Englewood Cliffs NJ, 1975. Zbl 0306.54001, MR 0464128 |
Reference:
|
[11] Rubin H., Rubin J.E.: Equivalents of the Axiom of Choice, II.North-Holland, 1985. MR 0798475 |
Reference:
|
[12] Herrlich H.: Compactness and the Axiom of Choice.Applied Categorical Structures 4 (1996), 1-14. Zbl 0881.54027, MR 1393958 |
. |