Previous |  Up |  Next

Article

Title: The Bordalo order on a commutative ring (English)
Author: Henriksen, Melvin
Author: Smith, F. A.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 40
Issue: 3
Year: 1999
Pages: 429-440
.
Category: math
.
Summary: If $R$ is a commutative ring with identity and $\leq$ is defined by letting $a\leq b$ mean $ab=a$ or $a=b$, then $(R,\leq)$ is a partially ordered ring. Necessary and sufficient conditions on $R$ are given for $(R,\leq)$ to be a lattice, and conditions are given for it to be modular or distributive. The results are applied to the rings $Z_{n}$ of integers mod $n$ for $n\geq2$. In particular, if $R$ is reduced, then $(R,\leq)$ is a lattice iff $R$ is a weak Baer ring, and $(R,\leq)$ is a distributive lattice iff $R$ is a Boolean ring, $Z_{3},Z_{4}$, $Z_{2}[x]/x^{2}Z_{2}[x]$, or a four element field. (English)
Keyword: commutative ring
Keyword: reduced ring
Keyword: integral domain
Keyword: field
Keyword: connected ring
Keyword: \linebreak Boolean ring
Keyword: weak Baer Ring
Keyword: regular element
Keyword: annihilator
Keyword: nilpotents
Keyword: idempotents
Keyword: cover
Keyword: partial order
Keyword: incomparable elements
Keyword: lattice
Keyword: modular lattice
Keyword: distributive lattice
MSC: 03G10
MSC: 06A06
MSC: 06F25
MSC: 11A07
MSC: 13A99
idZBL: Zbl 1011.06019
idMR: MR1732492
.
Date available: 2009-01-08T18:53:45Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119099
.
Reference: [Be] Berberian S.: Baer$^*$-rings.Springer-Verlag, New York, 1972. Zbl 0679.16011, MR 0429975
Reference: [Bo] Bordalo G.: Naturally ordered commutative rings.preprint.
Reference: [ES] Speed T., Evans M.: A note on commutative Baer rings.J. Austral. Math. Soc. 13 (1971), 1-6. MR 0294318
Reference: [J] Jacobson N.: Basic Algebra I.W.H. Freeman and Co., San Francisco, 1974. Zbl 0557.16001, MR 0356989
Reference: [K] Kist J.: Minimal prime ideals in commutative semigroups.Proc. London Math. Soc. 13 (1963), 31-50. Zbl 0108.04004, MR 0143837
Reference: [Sp1] Speed T.: A note on commutative Baer rings I.J. Austral. Math. Soc. 14 (1972), 257-263. MR 0318120
Reference: [Sp2] Speed T.: A note on commutative Baer rings II.ibid. 15 (1973), 15-21. MR 0330140
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_40-1999-3_3.pdf 233.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo