Title:
|
Productivity of coreflective classes of topological groups (English) |
Author:
|
Herrlich, Horst |
Author:
|
Hušek, Miroslav |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
40 |
Issue:
|
3 |
Year:
|
1999 |
Pages:
|
551-560 |
. |
Category:
|
math |
. |
Summary:
|
Every nontrivial countably productive coreflective subcategory of topological linear spaces is $\kappa$-productive for a large cardinal $\kappa$ (see [10]). Unlike that case, in uniform spaces for every infinite regular cardinal $\kappa$, there are coreflective subcategories that are $\kappa$-productive and not $\kappa^+$-productive (see [8]). From certain points of view, the category of topological groups lies in between those categories above and we shall show that the corresponding results on productivity of coreflective subcategories are also ``in between'': for some coreflections the results analogous to those in topological linear spaces are true, for others the results analogous to those for uniform spaces hold. (English) |
Keyword:
|
productivity |
Keyword:
|
topological group |
Keyword:
|
coreflective class |
MSC:
|
18A40 |
MSC:
|
18B30 |
MSC:
|
54B10 |
MSC:
|
54B30 |
MSC:
|
54H11 |
idZBL:
|
Zbl 1009.54041 |
idMR:
|
MR1732481 |
. |
Date available:
|
2009-01-08T18:55:09Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119110 |
. |
Reference:
|
[1] Adámek J., Herrlich H., Strecker G.: Abstract and Concrete Categories.Wiley Interscience, New York, 1990. MR 1051419 |
Reference:
|
[2] Balcar B: Sequential Boolean algebras.preprint, May 1995. |
Reference:
|
[3] Balcar B., Hušek M.: Sequential continuity and submeasurable cardinals.to appear in Topology Appl. MR 1806027 |
Reference:
|
[4] Chudnovskij D.V.: Sequentially continuous mappings and real-valued measurable cardinals.Infinite and finite sets (Colloq. Math. Soc. J. Bolyai, Vol.10, Part I, Keszthély 1973), (North Holland, Amsterdam, 1975), pp.275-288. MR 0505507 |
Reference:
|
[5] Dierolf S.: Über asoziirte lineare und lokalkonvexe Topologien.Manuscripta Math. 16 (1975), 27-46. MR 0415351 |
Reference:
|
[6] Dierolf P., Dierolf S.: On linear topologies determined by a family of subsets of a topological vector spaces.Gen. Topology Appl. 8 (1978), 127-140. MR 0473867 |
Reference:
|
[7] Herrlich H.: On the concept of reflections in general topology.in: Contributions to Extension Theory of Topological Structures, Proc. Symp. Berlin 1967 (VEB, Berlin 1969). Zbl 0182.25301, MR 0284986 |
Reference:
|
[8] Hušek M.: Products of uniform spaces.Czech. Math. J. 29 (1979), 130-141. MR 0518147 |
Reference:
|
[9] Hušek M.: Sequentially continuous homomorphisms on products of topological groups.Topology Appl. 70 (1996), 155-165. MR 1397074 |
Reference:
|
[10] Hušek M.: Productivity of some classes of topological linear spaces.Topology Appl. 80 (1997), 141-154. MR 1469474 |
Reference:
|
[11] Semadeni Z., Swirszcz T.: Reflective and coreflective subcategories of categories of Banach spaces and Abelian groups.Bull. Acad. Pol. 25 (1977), 1105-1107. MR 0476824 |
Reference:
|
[12] Shelah S.: Infinite Abelian groups, Whitehead problem and some constructions.Israel J. Math. 18 (1974), 243-256. Zbl 0318.02053, MR 0357114 |
Reference:
|
[13] Solovay R.M.: Real-valued measurable cardinals.Axiomatic Set Theory (Proc. Symp. Pure Math., Vol XIII, Part I, California, 1967, Amer. Math. Soc., 1971), pp.397-428. Zbl 0222.02078, MR 0290961 |
Reference:
|
[14] Sydow W.: Über die Kategorie der topologischen Vektorräume.Doktor-Dissertation (Fernuniversität Hagen, 1980). Zbl 0466.18006 |
. |