Title:
|
An example of strongly self-homeomorphic dendrite not pointwise self-homeomorphic (English) |
Author:
|
Pyrih, Pavel |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
40 |
Issue:
|
3 |
Year:
|
1999 |
Pages:
|
571-576 |
. |
Category:
|
math |
. |
Summary:
|
Such spaces in which a homeomorphic image of the whole space can be found in every open set are called {\it self-homeomorphic}. W.J. Charatonik and A. Dilks asked if any strongly self-homeomorphic dendrite is pointwise self-homeomorphic. We give a negative answer in Example 2.1. (English) |
Keyword:
|
continuum |
Keyword:
|
dendrite |
Keyword:
|
fan |
Keyword:
|
triod |
Keyword:
|
self-homeomorphic |
MSC:
|
54C25 |
MSC:
|
54F15 |
MSC:
|
54F50 |
idZBL:
|
Zbl 1010.54038 |
idMR:
|
MR1732479 |
Note:
|
XXX v náhledu jsou stránky 583, 572-576 () |
. |
Date available:
|
2009-01-08T18:55:20Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119112 |
. |
Reference:
|
[1] Charatonik W.J., Dilks A.: On self-homeomorphic spaces.Topology Appl. 55 (1994), 215-238. Zbl 0788.54040, MR 1259506 |
Reference:
|
[2] Nadler S.B., Jr.: Continuum Theory: An Introduction.Monographs and Textbooks in Pure and Applied Math, vol. 158, Marcel Dekker, Inc., New York, N.Y. (1992). Zbl 0757.54009, MR 1192552 |
. |