Previous |  Up |  Next

Article

Title: Infinitesimal characterization of almost Hermitian homogeneous spaces (English)
Author: Console, Sergio
Author: Nicolodi, Lorenzo
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 40
Issue: 4
Year: 1999
Pages: 713-721
.
Category: math
.
Summary: In this note it is shown that almost Hermitian locally homogeneous manifolds are determined, up to local isometries, by an integer $k_H$, the covariant derivatives of the curvature tensor up to order $k_H+2$ and the covariant derivatives of the complex structure up to the second order calculated at some point. An example of a Hermitian locally homogeneous manifold which is not locally isometric to any Hermitian globally homogeneous manifold is given. (English)
Keyword: almost Hermitian homogeneous spaces
Keyword: Singer invariant
MSC: 53C30
MSC: 53C55
idZBL: Zbl 1020.53031
idMR: MR1756547
.
Date available: 2009-01-08T18:56:50Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119125
.
Reference: [Ki] Kiričenko V.: On homogeneous Riemannian spaces with invariant tensor structure.Soviet Math. Dokl. 21 (2) (1980), 734-737.
Reference: [K1] Kowalski O.: Generalized Symmetric Spaces.Lecture Notes in Math. 805 Springer Berlin (1980). Zbl 0431.53042, MR 0579184
Reference: [K2] Kowalski O.: Counter-example to the ``Second Singer's Theorem''.Ann. Global Anal. Geom. 8 (1990), 211-214. Zbl 0736.53047, MR 1088512
Reference: [KT] Kowalski O., Tricerri F.: A canonical connection for locally homogeneous Riemannian manifolds.D. Ferus et al. Proc. Conf. Global Diff. Geom. and Global Analysis, Berlin, 1990, Lecture Notes in Math. 1481 Springer Berlin (1990), 97-103. MR 1178522
Reference: [LT] Lastaria F., Tricerri F.: Curvature orbits and locally homogeneous Riemannian manifolds.Ann. Mat. Pura Appl. 165 (1993), 121-131. Zbl 0804.53072, MR 1271415
Reference: [No] Nomizu K.: Invariant affine connections on homogeneous spaces.Amer. J. Math. 76 (1954), 33-65. Zbl 0059.15805, MR 0059050
Reference: [NT] Nicolodi L., Tricerri F.: On two theorems of I.M. Singer about homogeneous spaces.Ann. Global Anal. Geom. 8 (1990), 193-209. Zbl 0676.53058, MR 1088511
Reference: [Se] Sekigawa K.: Notes on homogeneous almost Hermitian manifolds.Hokkaido Math. J. 7 (1978), 206-213. Zbl 0388.53014, MR 0509406
Reference: [Si] Singer I.M.: Infinitesimally homogeneous spaces.Comm. Pure Appl. Math. 13 (1960), 685-697. Zbl 0171.42503, MR 0131248
Reference: [Tr] Tricerri F.: Locally homogeneous Riemannian manifolds.Rend. Sem. Mat. Univ. Politec. Torino 50/4 (1993), 411-426. Zbl 0804.53072, MR 1261452
Reference: [TV] Tricerri F., Vanhecke L.: Homogeneous Structures on Riemannian Manifolds.London Mathematical Society Lecture Notes Series 83, Cambridge University Press Cambridge (1983). Zbl 0509.53043, MR 0712664
Reference: [TW] Tricerri F., Watanabe Y.: Infinitesimal models and locally homogeneous almost Hermitian manifolds.Math. J. Toyama Univ. 18 (1995), 147-154. Zbl 0865.53042, MR 1369702
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_40-1999-4_9.pdf 221.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo