Previous |  Up |  Next

Article

Title: Strongly sequential spaces (English)
Author: Mynard, Frédéric
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 41
Issue: 1
Year: 2000
Pages: 143-153
.
Category: math
.
Summary: The problem of Y. Tanaka [10] of characterizing the topologies whose products with each first-countable space are sequential, is solved. The spaces that answer the problem are called strongly sequential spaces in analogy to strongly Fréchet spaces. (English)
Keyword: sequential
Keyword: Fréchet
Keyword: strongly Fréchet topology
Keyword: product convergence
Keyword: Antoine convergence
Keyword: continuous convergence
MSC: 54A20
MSC: 54B10
MSC: 54B30
MSC: 54D55
idZBL: Zbl 1090.54006
idMR: MR1756935
.
Date available: 2009-01-08T18:59:31Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119149
.
Reference: [1] Bourdaud G.: Espaces d'Antoine et semi-espaces d'Antoine.Cahiers de Topologies et Géométrie Différentielle 16 107-133 (1975). Zbl 0315.54005, MR 0394529
Reference: [2] Choquet G.: Convergences.Ann. Inst. Fourier 23 55-112 (1947). MR 0025716
Reference: [3] Dolecki S.: Convergence-theoretic approach to quotient quest.Topology Appl. 73 1-21 (1996). Zbl 0862.54001, MR 1413721
Reference: [4] Dolecki S., Mynard F.: Convergence theoretic mechanisms behind product theorems.to appear in Topology Appl. Zbl 0953.54002, MR 1780899
Reference: [5] Engelking R.: Topology.PWN, 1977. Zbl 0932.01059
Reference: [6] Michael E.: A quintuple quotient quest.Gen. Topology Appl. 2 91-138 (1972). Zbl 0238.54009, MR 0309045
Reference: [7] Michael E.: Local compactness and cartesian product of quotient maps and $k$-spaces.Ann. Inst. Fourier (Grenoble) 19 281-286 (1968). MR 0244943
Reference: [8] Mynard F.: Coreflectively modified continuous duality applied to classical product theorems.to appear. Zbl 1007.54008, MR 1890032
Reference: [9] Olson R.C.: Biquotient maps, countably bisequential spaces and related topics.Topology Appl. 4 1-28 (1974). MR 0365463
Reference: [10] Tanaka Y.: Products of sequential spaces.Proc. Amer. Math. Soc. 54 371-375 (1976). Zbl 0292.54025, MR 0397665
Reference: [11] Tanaka Y.: Necessary and sufficient conditions for products of $k$-spaces.Topology Proc. 14 281-312 (1989). Zbl 0727.54012, MR 1107729
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_41-2000-1_14.pdf 242.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo