Title:
|
On $n$-in-countable bases (English) |
Author:
|
Peregudov, S. A. |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
41 |
Issue:
|
1 |
Year:
|
2000 |
Pages:
|
175-178 |
. |
Category:
|
math |
. |
Summary:
|
Some results concerning spaces with countably weakly uniform bases are generalized for spaces with $n$-in-countable ones. (English) |
Keyword:
|
weakly uniform base |
Keyword:
|
$n$-in-countable base |
Keyword:
|
countably compact space |
Keyword:
|
separable space |
MSC:
|
54A25 |
MSC:
|
54D30 |
MSC:
|
54D70 |
MSC:
|
54E35 |
idZBL:
|
Zbl 1038.54011 |
idMR:
|
MR1756937 |
. |
Date available:
|
2009-01-08T18:59:43Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119151 |
. |
Reference:
|
[1] Arhangel'skii A.V., Just W., Reznichenko E., Szeptyczki P.J.: Sharp bases and weakly uniform bases versus point countable bases.to appear. |
Reference:
|
[2] Balogh Z., Gruenhage G.: Base multiplicity in compact and generalized compact spaces.to appear. Zbl 0985.54022, MR 1847460 |
Reference:
|
[3] Engelking R.: General Topology.Warsaw, Heldermann Verlag, Berlin, 1989. Zbl 0684.54001, MR 1039321 |
Reference:
|
[4] Erdös P., Rado R.: A partition calculus in set theory.Bull. Amer. Math. Soc. 62 (1956), 427-489. MR 0081864 |
Reference:
|
[5] Hewitt E.: Rings of real-valued continuous functions,1.Trans. Amer. Math. Soc. 64 (1948), 45-99. MR 0026239 |
Reference:
|
[6] Peregudov S.A.: Weakly uniform bases and the first axiom of countability (in Russian).Math. Zametki 3 (1986), 331-340. MR 0869924 |
Reference:
|
[7] Peregudov S.A.: On metrizability in a class of topological spaces with a weakly uniform base (in Russian).Bull. Pol. Acad. Nauk 28 (1980), 609-612. MR 0628650 |
Reference:
|
[8] Ponomarev V.I.: On metrizability of finally compact spaces with a point countable base (in Russian).Dokl. Akad. Nauk SSSR 174 (1967), 1274-1277. MR 0216465 |
Reference:
|
[9] Shapirovskii B.E.: On separability and metrizability of spaces with Souslin condition (in Russian).Dokl. Akad. Nauk SSSR 207 (1972), 800-803. MR 0322801 |
. |