Previous |  Up |  Next

Article

Title: Zeroes of the Bergman kernel of Hartogs domains (English)
Author: Engliš, Miroslav
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 41
Issue: 1
Year: 2000
Pages: 199-202
.
Category: math
.
Summary: We exhibit a class of bounded, strongly convex Hartogs domains with real-analytic boundary which are not Lu Qi-Keng, i.e. whose Bergman kernel function has a zero. (English)
Keyword: Lu Qi-Keng conjecture
Keyword: Hartogs domain
Keyword: Bergman kernel
MSC: 32A07
MSC: 32A25
MSC: 32H10
idZBL: Zbl 1038.32002
idMR: MR1756941
.
Date available: 2009-01-08T19:00:15Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119155
.
Reference: [B1] Boas H.P.: Counterexample to the Lu Qi-Keng conjecture.Proc. Amer. Math. Soc. 97 (1986), 374-375. Zbl 0596.32032, MR 0835902
Reference: [B2] Boas H.P.: The Lu Qi-Keng conjecture fails generically.Proc. Amer. Math. Soc. 124 (1996), 2021-2027. Zbl 0857.32010, MR 1317032
Reference: [BFS] Boas H.P., Fu S., Straube E.: The Bergman kernel function: explicit formulas and zeroes.Proc. Amer. Math. Soc. 127 (1999), 805-811. Zbl 0919.32013, MR 1469401
Reference: [E1] Engliš M.: Asymptotic behaviour of reproducing kernels of weighted Bergman spaces.Trans. Amer. Math. Soc. 349 (1997), 3717-3735. MR 1401769
Reference: [E2] Engliš M.: A Forelli-Rudin construction and asymptotics of weighted Bergman kernels.preprint, 1998. MR 1795632
Reference: [Lig] Ligocka E.: On the Forelli-Rudin construction and weighted Bergman projections.Studia Math. 94 (1989), 257-272. Zbl 0688.32020, MR 1019793
Reference: [Lu] Lu Q.-K. (K.H. Look): On Kaehler manifolds with constant curvature.Chinese Math. 8 (1966), 283-298. MR 0206990
Reference: [OPY] Oeljeklaus K., Pflug P., Youssfi E.H.: The Bergman kernel of the minimal ball and applications.Ann. Inst. Fourier (Grenoble) 47 (1997), 915-928. Zbl 0873.32025, MR 1465791
Reference: [PY] Pflug P., Youssfi E.H.: The Lu Qi-Keng conjecture fails for strongly convex algebraic domains.Arch. Math. 71 (1998), 240-245. Zbl 0911.32037, MR 1637386
Reference: [Skw] Skwarczynski M.: Biholomorphic invariants related to the Bergman function.Dissertationes Math. 173 (1980). Zbl 0443.32014, MR 0575756
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_41-2000-1_20.pdf 172.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo