Previous |  Up |  Next

Article

Keywords:
Moufang loop; order; nonassociative
Summary:
The paper surveys the known results concerning the question: ``For what values of $n$ does there exist a nonassociative Moufang loop of order $n$?'' Proofs of the newest results for $n$ odd, and a complete resolution of the case $n$ even are also presented.
References:
[1] Bol G.: Gewebe und Gruppen. Math. Ann. 114 (1937), 414-431. MR 1513147 | Zbl 0016.22603
[2] Bruck R.H.: Contributions to the theory of loops. Trans. Amer. Math. Soc. 60 (1946), 245-354. (MR 8, p.134). MR 0017288 | Zbl 0061.02201
[3] Bruck R.H.: A Survey of Binary Systems. Ergeb. Math. Grenzgeb., vol. 20, Springer Verlag, 1968. (MR 20 # 76). MR 0093552 | Zbl 0141.01401
[4] Chein O.: Moufang loops of small order. I. Trans. Amer. Math. Soc. 188 (1974), 31-51. (MR 48 # 8673). MR 0330336 | Zbl 0286.20088
[5] Chein O.: Moufang loops of small order. Mem. Amer. Math. Soc. 197 , Vol 13, Issue 1 (1978), 1-131. (MR 57 # 6271). MR 0466391 | Zbl 0378.20053
[6] Chein O., Pflugfelder H.O.: The smallest Moufang loop. Archiv der Mathematik 22 (1971), 573-576. (MR 45 # 6966). MR 0297914 | Zbl 0241.20061
[7] Glauberman G.: On loops of odd order II. J. Algebra 8 (1968), 393-414. (MR 36 # 5250). MR 0222198 | Zbl 0155.03901
[8] Leong F.: Moufang loops of order $p^{4}$. Nanta Math. 7 (1974), 33-34. (MR 51 # 5826). MR 0369593
[9] Leong F., Rajah A.: On Moufang loops of odd order $pq^{2}$. J. Algebra 176 (1995), 265-270. (MR 96i # 20082). MR 1345304
[10] Leong F., Rajah A.: Moufang loops of odd order $p_{1}^{2}p_{2}^{2}...p_m^{2}$. J. Algebra 181 (1996), 876-883 (MR 97i # 20083). MR 1386583
[11] Leong F., Rajah A.: Moufang loops of odd order $p^{4}q_{1}...q_n$. J. Algebra 184 (1996), 561-569. (MR 97k # 20118). MR 1409228 | Zbl 0860.20054
[12] Leong F., Rajah A.: Moufang loops of odd order $p^{\alpha }q_{1}^{2}...q_n^{2}r_{1}...r_m$. J. Algebra 190 (1997), 474-486. (MR 98b # 20115). MR 1441958 | Zbl 0874.20046
[13] Leong F., Teh P.E.: Moufang loops of orders $2pq$. Bull. of the Malaysian Math. Soc. 15 (1992), 27-29. (MR 93j # 20142). MR 1196349 | Zbl 0766.20025
[14] Leong F., Teh P.E.: Moufang loops of even order. J. Algebra 164 (1994), 409-414. (MR 95b # 20097). MR 1271244 | Zbl 0804.20050
[15] Leong F., Teh P.E., Lim V.K.: Moufang loops of odd order $p^mq_{1}...q_n$. J. Algebra 168 (1994), 348-352. (MR 95g # 20068). MR 1289104 | Zbl 0814.20054
[16] Purtill M.: On Moufang loops of order the product of three primes. J. Algebra 112 (1988), 122-128. (MR 89c # 20120). MR 0921968
[17] Purtill M.: Corrigendum. J. Algebra 145 (1992), p.262. (MR 92j # 20066). MR 1144674 | Zbl 0742.20068
[18] Rajah A.: Which Moufang loops are associative. Doctoral Dissertation, University Sains Malaysia, 1996. Zbl 1006.20501
[19] Rajah A., Jamal E.: Moufang loops of order $2m$. Publ. Math. Debrecen 55 (1999), 47-51. MR 1708430 | Zbl 0933.20053
[20] Scott W.R.: Group Theory. Prentice Hall, Englewood Cliffs, NJ, 1964. MR 0167513 | Zbl 0897.20029
[21] Wright C.R.B.: Nilpotency conditions for finite loops. Illinois J. Math. 9 (1965), 399-409. (MR 31 # 5918). MR 0181691 | Zbl 0135.03701
[22] Zorn M.: The theory of alternative rings. Hamb. Abhandl. 8 (1930), 123-147.
Partner of
EuDML logo